File size: 3,775 Bytes
3a878fa
4e52062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4752ca2
4e52062
 
4752ca2
4e52062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74d20b5
4e52062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from transformers import AutoTokenizer
from peft import PeftModel, PeftConfig

config = PeftConfig.from_pretrained("TohidA/LlamaInstructMona")
model = AutoModelForCausalLM.from_pretrained("mlabonne/llama-2-7b-miniguanaco")
model = PeftModel.from_pretrained(model, "TohidA/LlamaInstructMona")

if torch.cuda.is_available():
    model = model.cuda()

tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

def prompt(instruction, input=''):
    if input=='':
        return f"Below is an instruction that describes a task. Write a response that appropriately completes the request. \n\n### Instruction:\n{instruction} \n\n### Response:\n"
    return f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. \n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"

tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id

def instruct(instruction, input='', temperature=0.7, top_p=0.95, top_k=4, max_new_tokens=128, do_sample=False, penalty_alpha=0.6, repetition_penalty=1., stop="\n\n"):
    input_ids = tokenizer(prompt(instruction, input).strip(), return_tensors='pt').input_ids.cuda()
    with torch.cuda.amp.autocast():
        outputs = model.generate(
            input_ids=input_ids,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            do_sample=do_sample,
            repetition_penalty=repetition_penalty
        )
    if stop=="":
        return tokenizer.decode(outputs.sequences[0], skip_special_tokens=True).split("### Response:")[1].strip(), prompt(instruction, input)
    return tokenizer.decode(outputs.sequences[0], skip_special_tokens=True).split("### Response:")[1].strip().split(stop)[0].strip(), prompt(instruction, input)
    

import locale
locale.getpreferredencoding = lambda: "UTF-8"

import gradio as gr

input_text = gr.Textbox(label="Input")
instruction_text = gr.Textbox(label="Instruction")
temperature = gr.Slider(label="Temperature", minimum=0, maximum=1, value=0.7, step=0.05)
top_p = gr.Slider(label="Top-P", minimum=0, maximum=1, value=0.95, step=0.01)
top_k = gr.Slider(label="Top-K", minimum=0, maximum=128, value=40, step=1)
max_new_tokens = gr.Slider(label="Tokens", minimum=1, maximum=256, value=64)
do_sample = gr.Checkbox(label="Do Sample", value=True)
penalty_alpha = gr.Slider(minimum=0, maximum=1, value=0.5)
repetition_penalty = gr.Slider(minimum=1., maximum=2., value=1., step=0.1)
stop = gr.Textbox(label="Stopping Criteria", value="")

output_prompt = gr.Textbox(label="Prompt")
output_text = gr.Textbox(label="Output")
description = """
The [TohidA/InstructLlamaMONA-withMONAdataset](https://hf.co/TohidA/LlamaInstructMona). A Llama chat 7B model finetuned on an [instruction dataset](https://huggingface.co/mlabonne/llama-2-7b-miniguanaco), then finetuned with the RL/PPO using a [Reward model](https://huggingface.co/TohidA/MONAreward) which is a BERT classifier trained on [Monda dataset](https://huggingface.co/datasets/TohidA/MONA), with [low rank adaptation](https://arxiv.org/abs/2106.09685) for a single epoch.
"""
gr.Interface(fn=instruct,
             inputs=[instruction_text, input_text, temperature, top_p, top_k, max_new_tokens, do_sample, penalty_alpha, repetition_penalty, stop],
             outputs=[output_text, output_prompt],
             title="InstructLlamaMONA 7B Gradio Demo", description=description).launch(
    debug=True,
    share=True
)