Tokymin's picture
模型和requirements.txt文件
7dd220a
raw
history blame
1.33 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# 加载模型和tokenizer
tokenizer = AutoTokenizer.from_pretrained("saved_models/model_20240302-214915_lr1e-05_optAdamW_lossBCEWithLogitsLoss_batch16_epoch10.pt")
model = AutoModelForSequenceClassification.from_pretrained("saved_models/model_20240302-214915_lr1e-05_optAdamW_lossBCEWithLogitsLoss_batch16_epoch10.pt", num_labels=8)
model.eval()
def predict(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1).squeeze()
# 假设每个类别(SAS_Class和SDS_Class)都有4个概率值
sas_probs = probabilities[:4] # 获取SAS_Class的概率
sds_probs = probabilities[4:] # 获取SDS_Class的概率
return sas_probs, sds_probs
# 创建Streamlit应用
st.title("Multi-label Classification App")
# 用户输入文本
user_input = st.text_area("Enter text here", "Type something...")
if st.button("Predict"):
# 显示预测结果
sas_probs, sds_probs = predict(user_input)
st.write("SAS_Class probabilities:", sas_probs.numpy())
st.write("SDS_Class probabilities:", sds_probs.numpy())