from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # 指定预训练模型 model_name = "bert-base-uncased" # 加载分词器和模型 tokenizer = AutoTokenizer.from_pretrained(model_name,force_download=True, resume_download=False) model = AutoModelForSequenceClassification.from_pretrained(model_name,force_download=True, resume_download=False) # 要进行分类的文本 text = "I love using transformers for natural language processing." # 使用分词器处理文本 inputs = tokenizer(text, return_tensors="pt") # 使用模型进行预测 with torch.no_grad(): logits = model(**inputs).logits # 解析预测结果 predicted_class_id = logits.argmax().item() print(f"Predicted class id: {predicted_class_id}")