TomFinegan commited on
Commit
025c16b
·
1 Parent(s): 57e768a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -2
app.py CHANGED
@@ -1,4 +1,33 @@
1
  import streamlit as st
 
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import pickle
3
+ from sklearn.feature_extraction.text import TfidfVectorizer
4
+ from sklearn.linear_model import PassiveAggressiveClassifier
5
+ model = PassiveAggressiveClassifier(max_iter=50)
6
 
7
+ with open('tfidf.pickle', 'rb') as f:
8
+ tfidf = pickle.load(f)
9
+
10
+ PAGE_CONFIG = {"page_title":"My first ML app","page_icon":":smiley:","layout":"centered"}
11
+ st.set_page_config(**PAGE_CONFIG)
12
+ st.title("My first ML app")
13
+ st.subheader("Here is my awesome learning result")
14
+
15
+ menu = ["Home","About my startup"]
16
+ choice = st.sidebar.selectbox('Menu',menu)
17
+ if choice == 'Home':
18
+ st.subheader("Let's get down to the details.")
19
+
20
+ title = st.text_input('News title', 'Queen Elizabeth buys an Unicorn')
21
+
22
+ with open('model.pkl', 'rb') as f:
23
+ model = pickle.load(f)
24
+
25
+ def predict_news(news_text):
26
+ prediction = model.predict(tfidf.transform([news_text]))
27
+ if prediction[0] == 1:
28
+ return("Possibly fake news")
29
+ else:
30
+ return("Possibly real news")
31
+
32
+ result = predict_news(title)
33
+ st.write('Fake classification: ', result)