Spaces:
Running
Running
File size: 21,179 Bytes
85737a6 65c9869 85737a6 65c9869 85737a6 9564e60 85737a6 def3d69 85737a6 a4b23f2 85737a6 a4b23f2 85737a6 a4b23f2 85737a6 def3d69 85737a6 65c9869 85737a6 65c9869 85737a6 65c9869 85737a6 65c9869 85737a6 65c9869 85737a6 9b49bc2 85737a6 9b49bc2 85737a6 65c9869 85737a6 65c9869 85737a6 f1b5dd8 85737a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
#!/usr/bin/env python
# encoding: utf-8
import spaces
import torch
import argparse
from transformers import AutoModel, AutoTokenizer
import gradio as gr
from PIL import Image
from decord import VideoReader, cpu
import io
import os
import copy
import requests
import base64
import json
import traceback
import re
import modelscope_studio as mgr
# README, How to run demo on different devices
# For Nvidia GPUs.
# python web_demo_2.6.py --device cuda
# For Mac with MPS (Apple silicon or AMD GPUs).
# PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.6.py --device mps
os.system("pip list|grep torch")
os.system("pip list|grep trans")
os.system("pip list|grep flash")
# Argparser
parser = argparse.ArgumentParser(description='demo')
parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
parser.add_argument('--multi-gpus', action='store_true', default=False, help='use multi-gpus')
args = parser.parse_args()
device = args.device
assert device in ['cuda', 'mps']
# Load model
model_path = 'openbmb/MiniCPM-V-2_6'
if 'int4' in model_path:
if device == 'mps':
print('Error: running int4 model with bitsandbytes on Mac is not supported right now.')
exit()
#model = AutoModel.from_pretrained(model_path, trust_remote_code=True, attn_implementation='sdpa')
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
else:
if True: #args.multi_gpus:
from accelerate import load_checkpoint_and_dispatch, init_empty_weights, infer_auto_device_map
with init_empty_weights():
#model = AutoModel.from_pretrained(model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
device_map = infer_auto_device_map(model, max_memory={0: "10GB", 1: "10GB"},
no_split_module_classes=['SiglipVisionTransformer', 'Qwen2DecoderLayer'])
device_id = device_map["llm.model.embed_tokens"]
device_map["llm.lm_head"] = device_id # firtt and last layer should be in same device
device_map["vpm"] = device_id
device_map["resampler"] = device_id
device_id2 = device_map["llm.model.layers.26"]
device_map["llm.model.layers.8"] = device_id2
device_map["llm.model.layers.9"] = device_id2
device_map["llm.model.layers.10"] = device_id2
device_map["llm.model.layers.11"] = device_id2
device_map["llm.model.layers.12"] = device_id2
device_map["llm.model.layers.13"] = device_id2
device_map["llm.model.layers.14"] = device_id2
device_map["llm.model.layers.15"] = device_id2
device_map["llm.model.layers.16"] = device_id2
#print(device_map)
#model = load_checkpoint_and_dispatch(model, model_path, dtype=torch.bfloat16, device_map=device_map)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map=device_map)
else:
#model = AutoModel.from_pretrained(model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to(device=device)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model.eval()
ERROR_MSG = "Error, please retry"
model_name = 'MiniCPM-V 2.6'
MAX_NUM_FRAMES = 64
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}
def get_file_extension(filename):
return os.path.splitext(filename)[1].lower()
def is_image(filename):
return get_file_extension(filename) in IMAGE_EXTENSIONS
def is_video(filename):
return get_file_extension(filename) in VIDEO_EXTENSIONS
form_radio = {
'choices': ['Beam Search', 'Sampling'],
#'value': 'Beam Search',
'value': 'Sampling',
'interactive': True,
'label': 'Decode Type'
}
def create_component(params, comp='Slider'):
if comp == 'Slider':
return gr.Slider(
minimum=params['minimum'],
maximum=params['maximum'],
value=params['value'],
step=params['step'],
interactive=params['interactive'],
label=params['label']
)
elif comp == 'Radio':
return gr.Radio(
choices=params['choices'],
value=params['value'],
interactive=params['interactive'],
label=params['label']
)
elif comp == 'Button':
return gr.Button(
value=params['value'],
interactive=True
)
def create_multimodal_input(upload_image_disabled=False, upload_video_disabled=False):
return mgr.MultimodalInput(upload_image_button_props={'label': 'Upload Image', 'disabled': upload_image_disabled, 'file_count': 'multiple'},
upload_video_button_props={'label': 'Upload Video', 'disabled': upload_video_disabled, 'file_count': 'single'},
submit_button_props={'label': 'Submit'})
@spaces.GPU(duration=120)
def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
try:
print('msgs:', msgs)
answer = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
**params
)
res = re.sub(r'(<box>.*</box>)', '', answer)
res = res.replace('<ref>', '')
res = res.replace('</ref>', '')
res = res.replace('<box>', '')
answer = res.replace('</box>', '')
print('answer:', answer)
return 0, answer, None, None
except Exception as e:
print(e)
traceback.print_exc()
return -1, ERROR_MSG, None, None
def encode_image(image):
if not isinstance(image, Image.Image):
if hasattr(image, 'path'):
image = Image.open(image.path).convert("RGB")
else:
image = Image.open(image.file.path).convert("RGB")
# resize to max_size
max_size = 448*16
if max(image.size) > max_size:
w,h = image.size
if w > h:
new_w = max_size
new_h = int(h * max_size / w)
else:
new_h = max_size
new_w = int(w * max_size / h)
image = image.resize((new_w, new_h), resample=Image.BICUBIC)
return image
## save by BytesIO and convert to base64
#buffered = io.BytesIO()
#image.save(buffered, format="png")
#im_b64 = base64.b64encode(buffered.getvalue()).decode()
#return {"type": "image", "pairs": im_b64}
def encode_video(video):
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
if hasattr(video, 'path'):
vr = VideoReader(video.path, ctx=cpu(0))
else:
vr = VideoReader(video.file.path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1) # FPS
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if len(frame_idx)>MAX_NUM_FRAMES:
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
video = vr.get_batch(frame_idx).asnumpy()
video = [Image.fromarray(v.astype('uint8')) for v in video]
video = [encode_image(v) for v in video]
print('video frames:', len(video))
return video
def check_mm_type(mm_file):
if hasattr(mm_file, 'path'):
path = mm_file.path
else:
path = mm_file.file.path
if is_image(path):
return "image"
if is_video(path):
return "video"
return None
def encode_mm_file(mm_file):
if check_mm_type(mm_file) == 'image':
return [encode_image(mm_file)]
if check_mm_type(mm_file) == 'video':
return encode_video(mm_file)
return None
def make_text(text):
#return {"type": "text", "pairs": text} # # For remote call
return text
def encode_message(_question):
files = _question.files
question = _question.text
pattern = r"\[mm_media\]\d+\[/mm_media\]"
matches = re.split(pattern, question)
message = []
if len(matches) != len(files) + 1:
gr.Warning("Number of Images not match the placeholder in text, please refresh the page to restart!")
assert len(matches) == len(files) + 1
text = matches[0].strip()
if text:
message.append(make_text(text))
for i in range(len(files)):
message += encode_mm_file(files[i])
text = matches[i + 1].strip()
if text:
message.append(make_text(text))
return message
def check_has_videos(_question):
images_cnt = 0
videos_cnt = 0
for file in _question.files:
if check_mm_type(file) == "image":
images_cnt += 1
else:
videos_cnt += 1
return images_cnt, videos_cnt
def count_video_frames(_context):
num_frames = 0
for message in _context:
for item in message["content"]:
#if item["type"] == "image": # For remote call
if isinstance(item, Image.Image):
num_frames += 1
return num_frames
def respond(_question, _chat_bot, _app_cfg, params_form):
print("[respond] question:", _question)
_context = _app_cfg['ctx'].copy()
_context.append({'role': 'user', 'content': encode_message(_question)})
images_cnt = _app_cfg['images_cnt']
videos_cnt = _app_cfg['videos_cnt']
files_cnts = check_has_videos(_question)
if files_cnts[1] + videos_cnt > 1 or (files_cnts[1] + videos_cnt == 1 and files_cnts[0] + images_cnt > 0):
gr.Warning("Only supports single video file input right now!")
return _question, _chat_bot, _app_cfg
if params_form == 'Beam Search':
params = {
'sampling': False,
'num_beams': 3,
'repetition_penalty': 1.2,
"max_new_tokens": 2048
}
else:
params = {
'sampling': True,
'top_p': 0.8,
'top_k': 100,
'temperature': 0.7,
'repetition_penalty': 1.05,
"max_new_tokens": 2048
}
params["max_inp_length"] = 4352 # 4096+256
if files_cnts[1] + videos_cnt > 0:
#params["max_inp_length"] = 4352 # 4096+256
params["use_image_id"] = False
params["max_slice_nums"] = 1 if count_video_frames(_context) > 16 else 2
code, _answer, _, sts = chat("", _context, None, params)
images_cnt += files_cnts[0]
videos_cnt += files_cnts[1]
_context.append({"role": "assistant", "content": [make_text(_answer)]})
_chat_bot.append((_question, _answer))
if code == 0:
_app_cfg['ctx']=_context
_app_cfg['sts']=sts
_app_cfg['images_cnt'] = images_cnt
_app_cfg['videos_cnt'] = videos_cnt
upload_image_disabled = videos_cnt > 0
upload_video_disabled = videos_cnt > 0 or images_cnt > 0
return create_multimodal_input(upload_image_disabled, upload_video_disabled), _chat_bot, _app_cfg
def fewshot_add_demonstration(_image, _user_message, _assistant_message, _chat_bot, _app_cfg):
ctx = _app_cfg["ctx"]
message_item = []
if _image is not None:
image = Image.open(_image).convert("RGB")
ctx.append({"role": "user", "content": [encode_image(image), make_text(_user_message)]})
message_item.append({"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]})
else:
if _user_message:
ctx.append({"role": "user", "content": [make_text(_user_message)]})
message_item.append({"text": _user_message, "files": []})
else:
message_item.append(None)
if _assistant_message:
ctx.append({"role": "assistant", "content": [make_text(_assistant_message)]})
message_item.append({"text": _assistant_message, "files": []})
else:
message_item.append(None)
_chat_bot.append(message_item)
return None, "", "", _chat_bot, _app_cfg
def fewshot_respond(_image, _user_message, _chat_bot, _app_cfg, params_form):
user_message_contents = []
_context = _app_cfg["ctx"].copy()
if _image:
image = Image.open(_image).convert("RGB")
user_message_contents += [encode_image(image)]
if _user_message:
user_message_contents += [make_text(_user_message)]
if user_message_contents:
_context.append({"role": "user", "content": user_message_contents})
if params_form == 'Beam Search':
params = {
'sampling': False,
'num_beams': 3,
'repetition_penalty': 1.2,
"max_new_tokens": 2048
}
else:
params = {
'sampling': True,
'top_p': 0.8,
'top_k': 100,
'temperature': 0.7,
'repetition_penalty': 1.05,
"max_new_tokens": 2048
}
code, _answer, _, sts = chat("", _context, None, params)
_context.append({"role": "assistant", "content": [make_text(_answer)]})
if _image:
_chat_bot.append([
{"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]},
{"text": _answer, "files": []}
])
else:
_chat_bot.append([
{"text": _user_message, "files": [_image]},
{"text": _answer, "files": []}
])
if code == 0:
_app_cfg['ctx']=_context
_app_cfg['sts']=sts
return None, '', '', _chat_bot, _app_cfg
def regenerate_button_clicked(_question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg, params_form):
if len(_chat_bot) <= 1 or not _chat_bot[-1][1]:
gr.Warning('No question for regeneration.')
return '', _image, _user_message, _assistant_message, _chat_bot, _app_cfg
if _app_cfg["chat_type"] == "Chat":
images_cnt = _app_cfg['images_cnt']
videos_cnt = _app_cfg['videos_cnt']
_question = _chat_bot[-1][0]
_chat_bot = _chat_bot[:-1]
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
files_cnts = check_has_videos(_question)
images_cnt -= files_cnts[0]
videos_cnt -= files_cnts[1]
_app_cfg['images_cnt'] = images_cnt
_app_cfg['videos_cnt'] = videos_cnt
upload_image_disabled = videos_cnt > 0
upload_video_disabled = videos_cnt > 0 or images_cnt > 0
_question, _chat_bot, _app_cfg = respond(_question, _chat_bot, _app_cfg, params_form)
return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg
else:
last_message = _chat_bot[-1][0]
last_image = None
last_user_message = ''
if last_message.text:
last_user_message = last_message.text
if last_message.files:
last_image = last_message.files[0].file.path
_chat_bot = _chat_bot[:-1]
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
_image, _user_message, _assistant_message, _chat_bot, _app_cfg = fewshot_respond(last_image, last_user_message, _chat_bot, _app_cfg, params_form)
return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg
def flushed():
return gr.update(interactive=True)
def clear(txt_message, chat_bot, app_session):
txt_message.files.clear()
txt_message.text = ''
chat_bot = copy.deepcopy(init_conversation)
app_session['sts'] = None
app_session['ctx'] = []
app_session['images_cnt'] = 0
app_session['videos_cnt'] = 0
return create_multimodal_input(), chat_bot, app_session, None, '', ''
def select_chat_type(_tab, _app_cfg):
_app_cfg["chat_type"] = _tab
return _app_cfg
init_conversation = [
[
None,
{
# The first message of bot closes the typewriter.
"text": "You can talk to me now",
"flushing": False
}
],
]
css = """
video { height: auto !important; }
.example label { font-size: 16px;}
"""
introduction = """
## Features:
1. Chat with single image
2. Chat with multiple images
3. Chat with video
4. In-context few-shot learning
Click `How to use` tab to see examples.
"""
with gr.Blocks(css=css) as demo:
with gr.Tab(model_name):
with gr.Row():
with gr.Column(scale=1, min_width=300):
gr.Markdown(value=introduction)
params_form = create_component(form_radio, comp='Radio')
regenerate = create_component({'value': 'Regenerate'}, comp='Button')
clear_button = create_component({'value': 'Clear History'}, comp='Button')
with gr.Column(scale=3, min_width=500):
app_session = gr.State({'sts':None,'ctx':[], 'images_cnt': 0, 'videos_cnt': 0, 'chat_type': 'Chat'})
chat_bot = mgr.Chatbot(label=f"Chat with {model_name}", value=copy.deepcopy(init_conversation), height=600, flushing=False, bubble_full_width=False)
with gr.Tab("Chat") as chat_tab:
txt_message = create_multimodal_input()
chat_tab_label = gr.Textbox(value="Chat", interactive=False, visible=False)
txt_message.submit(
respond,
[txt_message, chat_bot, app_session, params_form],
[txt_message, chat_bot, app_session]
)
with gr.Tab("Few Shot") as fewshot_tab:
fewshot_tab_label = gr.Textbox(value="Few Shot", interactive=False, visible=False)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="filepath", sources=["upload"])
with gr.Column(scale=3):
user_message = gr.Textbox(label="User")
assistant_message = gr.Textbox(label="Assistant")
with gr.Row():
add_demonstration_button = gr.Button("Add Example")
generate_button = gr.Button(value="Generate", variant="primary")
add_demonstration_button.click(
fewshot_add_demonstration,
[image_input, user_message, assistant_message, chat_bot, app_session],
[image_input, user_message, assistant_message, chat_bot, app_session]
)
generate_button.click(
fewshot_respond,
[image_input, user_message, chat_bot, app_session, params_form],
[image_input, user_message, assistant_message, chat_bot, app_session]
)
chat_tab.select(
select_chat_type,
[chat_tab_label, app_session],
[app_session]
)
chat_tab.select( # do clear
clear,
[txt_message, chat_bot, app_session],
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
)
fewshot_tab.select(
select_chat_type,
[fewshot_tab_label, app_session],
[app_session]
)
fewshot_tab.select( # do clear
clear,
[txt_message, chat_bot, app_session],
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
)
chat_bot.flushed(
flushed,
outputs=[txt_message]
)
regenerate.click(
regenerate_button_clicked,
[txt_message, image_input, user_message, assistant_message, chat_bot, app_session, params_form],
[txt_message, image_input, user_message, assistant_message, chat_bot, app_session]
)
clear_button.click(
clear,
[txt_message, chat_bot, app_session],
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
)
with gr.Tab("How to use"):
with gr.Column():
with gr.Row():
image_example = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/m_bear2.gif", label='1. Chat with single or multiple images', interactive=False, width=400, elem_classes="example")
example2 = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/video2.gif", label='2. Chat with video', interactive=False, width=400, elem_classes="example")
example3 = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/fshot.gif", label='3. Few shot', interactive=False, width=400, elem_classes="example")
# launch
#demo.launch(share=False, debug=True, show_api=False, server_port=8885, server_name="0.0.0.0")
demo.queue()
demo.launch(show_api=False)
|