Spaces:
Running
Running
#!/usr/bin/env python | |
# encoding: utf-8 | |
import spaces | |
import torch | |
import argparse | |
from transformers import AutoModel, AutoTokenizer | |
import gradio as gr | |
from PIL import Image | |
from decord import VideoReader, cpu | |
import io | |
import os | |
import copy | |
import requests | |
import base64 | |
import json | |
import traceback | |
import re | |
import modelscope_studio as mgr | |
# README, How to run demo on different devices | |
# For Nvidia GPUs. | |
# python web_demo_2.6.py --device cuda | |
# For Mac with MPS (Apple silicon or AMD GPUs). | |
# PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.6.py --device mps | |
# Argparser | |
parser = argparse.ArgumentParser(description='demo') | |
parser.add_argument('--device', type=str, default='cuda', help='cuda or mps') | |
parser.add_argument('--multi-gpus', action='store_true', default=False, help='use multi-gpus') | |
args = parser.parse_args() | |
device = args.device | |
assert device in ['cuda', 'mps'] | |
# Load model | |
model_path = 'openbmb/MiniCPM-V-2_6' | |
if 'int4' in model_path: | |
if device == 'mps': | |
print('Error: running int4 model with bitsandbytes on Mac is not supported right now.') | |
exit() | |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, attn_implementation='sdpa') | |
else: | |
if args.multi_gpus: | |
from accelerate import load_checkpoint_and_dispatch, init_empty_weights, infer_auto_device_map | |
with init_empty_weights(): | |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16) | |
device_map = infer_auto_device_map(model, max_memory={0: "10GB", 1: "10GB"}, | |
no_split_module_classes=['SiglipVisionTransformer', 'Qwen2DecoderLayer']) | |
device_id = device_map["llm.model.embed_tokens"] | |
device_map["llm.lm_head"] = device_id # firtt and last layer should be in same device | |
device_map["vpm"] = device_id | |
device_map["resampler"] = device_id | |
device_id2 = device_map["llm.model.layers.26"] | |
device_map["llm.model.layers.8"] = device_id2 | |
device_map["llm.model.layers.9"] = device_id2 | |
device_map["llm.model.layers.10"] = device_id2 | |
device_map["llm.model.layers.11"] = device_id2 | |
device_map["llm.model.layers.12"] = device_id2 | |
device_map["llm.model.layers.13"] = device_id2 | |
device_map["llm.model.layers.14"] = device_id2 | |
device_map["llm.model.layers.15"] = device_id2 | |
device_map["llm.model.layers.16"] = device_id2 | |
#print(device_map) | |
model = load_checkpoint_and_dispatch(model, model_path, dtype=torch.bfloat16, device_map=device_map) | |
else: | |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16) | |
model = model.to(device=device) | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
model.eval() | |
ERROR_MSG = "Error, please retry" | |
model_name = 'MiniCPM-V 2.6' | |
MAX_NUM_FRAMES = 64 | |
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'} | |
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'} | |
def get_file_extension(filename): | |
return os.path.splitext(filename)[1].lower() | |
def is_image(filename): | |
return get_file_extension(filename) in IMAGE_EXTENSIONS | |
def is_video(filename): | |
return get_file_extension(filename) in VIDEO_EXTENSIONS | |
form_radio = { | |
'choices': ['Beam Search', 'Sampling'], | |
#'value': 'Beam Search', | |
'value': 'Sampling', | |
'interactive': True, | |
'label': 'Decode Type' | |
} | |
def create_component(params, comp='Slider'): | |
if comp == 'Slider': | |
return gr.Slider( | |
minimum=params['minimum'], | |
maximum=params['maximum'], | |
value=params['value'], | |
step=params['step'], | |
interactive=params['interactive'], | |
label=params['label'] | |
) | |
elif comp == 'Radio': | |
return gr.Radio( | |
choices=params['choices'], | |
value=params['value'], | |
interactive=params['interactive'], | |
label=params['label'] | |
) | |
elif comp == 'Button': | |
return gr.Button( | |
value=params['value'], | |
interactive=True | |
) | |
def create_multimodal_input(upload_image_disabled=False, upload_video_disabled=False): | |
return mgr.MultimodalInput(upload_image_button_props={'label': 'Upload Image', 'disabled': upload_image_disabled, 'file_count': 'multiple'}, | |
upload_video_button_props={'label': 'Upload Video', 'disabled': upload_video_disabled, 'file_count': 'single'}, | |
submit_button_props={'label': 'Submit'}) | |
def chat(img, msgs, ctx, params=None, vision_hidden_states=None): | |
try: | |
print('msgs:', msgs) | |
answer = model.chat( | |
image=None, | |
msgs=msgs, | |
tokenizer=tokenizer, | |
**params | |
) | |
res = re.sub(r'(<box>.*</box>)', '', answer) | |
res = res.replace('<ref>', '') | |
res = res.replace('</ref>', '') | |
res = res.replace('<box>', '') | |
answer = res.replace('</box>', '') | |
print('answer:', answer) | |
return 0, answer, None, None | |
except Exception as e: | |
print(e) | |
traceback.print_exc() | |
return -1, ERROR_MSG, None, None | |
def encode_image(image): | |
if not isinstance(image, Image.Image): | |
if hasattr(image, 'path'): | |
image = Image.open(image.path).convert("RGB") | |
else: | |
image = Image.open(image.file.path).convert("RGB") | |
# resize to max_size | |
max_size = 448*16 | |
if max(image.size) > max_size: | |
w,h = image.size | |
if w > h: | |
new_w = max_size | |
new_h = int(h * max_size / w) | |
else: | |
new_h = max_size | |
new_w = int(w * max_size / h) | |
image = image.resize((new_w, new_h), resample=Image.BICUBIC) | |
return image | |
## save by BytesIO and convert to base64 | |
#buffered = io.BytesIO() | |
#image.save(buffered, format="png") | |
#im_b64 = base64.b64encode(buffered.getvalue()).decode() | |
#return {"type": "image", "pairs": im_b64} | |
def encode_video(video): | |
def uniform_sample(l, n): | |
gap = len(l) / n | |
idxs = [int(i * gap + gap / 2) for i in range(n)] | |
return [l[i] for i in idxs] | |
if hasattr(video, 'path'): | |
vr = VideoReader(video.path, ctx=cpu(0)) | |
else: | |
vr = VideoReader(video.file.path, ctx=cpu(0)) | |
sample_fps = round(vr.get_avg_fps() / 1) # FPS | |
frame_idx = [i for i in range(0, len(vr), sample_fps)] | |
if len(frame_idx)>MAX_NUM_FRAMES: | |
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES) | |
video = vr.get_batch(frame_idx).asnumpy() | |
video = [Image.fromarray(v.astype('uint8')) for v in video] | |
video = [encode_image(v) for v in video] | |
print('video frames:', len(video)) | |
return video | |
def check_mm_type(mm_file): | |
if hasattr(mm_file, 'path'): | |
path = mm_file.path | |
else: | |
path = mm_file.file.path | |
if is_image(path): | |
return "image" | |
if is_video(path): | |
return "video" | |
return None | |
def encode_mm_file(mm_file): | |
if check_mm_type(mm_file) == 'image': | |
return [encode_image(mm_file)] | |
if check_mm_type(mm_file) == 'video': | |
return encode_video(mm_file) | |
return None | |
def make_text(text): | |
#return {"type": "text", "pairs": text} # # For remote call | |
return text | |
def encode_message(_question): | |
files = _question.files | |
question = _question.text | |
pattern = r"\[mm_media\]\d+\[/mm_media\]" | |
matches = re.split(pattern, question) | |
message = [] | |
if len(matches) != len(files) + 1: | |
gr.Warning("Number of Images not match the placeholder in text, please refresh the page to restart!") | |
assert len(matches) == len(files) + 1 | |
text = matches[0].strip() | |
if text: | |
message.append(make_text(text)) | |
for i in range(len(files)): | |
message += encode_mm_file(files[i]) | |
text = matches[i + 1].strip() | |
if text: | |
message.append(make_text(text)) | |
return message | |
def check_has_videos(_question): | |
images_cnt = 0 | |
videos_cnt = 0 | |
for file in _question.files: | |
if check_mm_type(file) == "image": | |
images_cnt += 1 | |
else: | |
videos_cnt += 1 | |
return images_cnt, videos_cnt | |
def count_video_frames(_context): | |
num_frames = 0 | |
for message in _context: | |
for item in message["content"]: | |
#if item["type"] == "image": # For remote call | |
if isinstance(item, Image.Image): | |
num_frames += 1 | |
return num_frames | |
def respond(_question, _chat_bot, _app_cfg, params_form): | |
print("[respond] question:", _question) | |
_context = _app_cfg['ctx'].copy() | |
_context.append({'role': 'user', 'content': encode_message(_question)}) | |
images_cnt = _app_cfg['images_cnt'] | |
videos_cnt = _app_cfg['videos_cnt'] | |
files_cnts = check_has_videos(_question) | |
if files_cnts[1] + videos_cnt > 1 or (files_cnts[1] + videos_cnt == 1 and files_cnts[0] + images_cnt > 0): | |
gr.Warning("Only supports single video file input right now!") | |
return _question, _chat_bot, _app_cfg | |
if params_form == 'Beam Search': | |
params = { | |
'sampling': False, | |
'num_beams': 3, | |
'repetition_penalty': 1.2, | |
"max_new_tokens": 2048 | |
} | |
else: | |
params = { | |
'sampling': True, | |
'top_p': 0.8, | |
'top_k': 100, | |
'temperature': 0.7, | |
'repetition_penalty': 1.05, | |
"max_new_tokens": 2048 | |
} | |
if files_cnts[1] + videos_cnt > 0: | |
params["max_inp_length"] = 4352 # 4096+256 | |
params["use_image_id"] = False | |
params["max_slice_nums"] = 1 if count_video_frames(_context) > 16 else 2 | |
code, _answer, _, sts = chat("", _context, None, params) | |
images_cnt += files_cnts[0] | |
videos_cnt += files_cnts[1] | |
_context.append({"role": "assistant", "content": [make_text(_answer)]}) | |
_chat_bot.append((_question, _answer)) | |
if code == 0: | |
_app_cfg['ctx']=_context | |
_app_cfg['sts']=sts | |
_app_cfg['images_cnt'] = images_cnt | |
_app_cfg['videos_cnt'] = videos_cnt | |
upload_image_disabled = videos_cnt > 0 | |
upload_video_disabled = videos_cnt > 0 or images_cnt > 0 | |
return create_multimodal_input(upload_image_disabled, upload_video_disabled), _chat_bot, _app_cfg | |
def fewshot_add_demonstration(_image, _user_message, _assistant_message, _chat_bot, _app_cfg): | |
ctx = _app_cfg["ctx"] | |
message_item = [] | |
if _image is not None: | |
image = Image.open(_image).convert("RGB") | |
ctx.append({"role": "user", "content": [encode_image(image), make_text(_user_message)]}) | |
message_item.append({"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]}) | |
else: | |
if _user_message: | |
ctx.append({"role": "user", "content": [make_text(_user_message)]}) | |
message_item.append({"text": _user_message, "files": []}) | |
else: | |
message_item.append(None) | |
if _assistant_message: | |
ctx.append({"role": "assistant", "content": [make_text(_assistant_message)]}) | |
message_item.append({"text": _assistant_message, "files": []}) | |
else: | |
message_item.append(None) | |
_chat_bot.append(message_item) | |
return None, "", "", _chat_bot, _app_cfg | |
def fewshot_respond(_image, _user_message, _chat_bot, _app_cfg, params_form): | |
user_message_contents = [] | |
_context = _app_cfg["ctx"].copy() | |
if _image: | |
image = Image.open(_image).convert("RGB") | |
user_message_contents += [encode_image(image)] | |
if _user_message: | |
user_message_contents += [make_text(_user_message)] | |
if user_message_contents: | |
_context.append({"role": "user", "content": user_message_contents}) | |
if params_form == 'Beam Search': | |
params = { | |
'sampling': False, | |
'num_beams': 3, | |
'repetition_penalty': 1.2, | |
"max_new_tokens": 2048 | |
} | |
else: | |
params = { | |
'sampling': True, | |
'top_p': 0.8, | |
'top_k': 100, | |
'temperature': 0.7, | |
'repetition_penalty': 1.05, | |
"max_new_tokens": 2048 | |
} | |
code, _answer, _, sts = chat("", _context, None, params) | |
_context.append({"role": "assistant", "content": [make_text(_answer)]}) | |
if _image: | |
_chat_bot.append([ | |
{"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]}, | |
{"text": _answer, "files": []} | |
]) | |
else: | |
_chat_bot.append([ | |
{"text": _user_message, "files": [_image]}, | |
{"text": _answer, "files": []} | |
]) | |
if code == 0: | |
_app_cfg['ctx']=_context | |
_app_cfg['sts']=sts | |
return None, '', '', _chat_bot, _app_cfg | |
def regenerate_button_clicked(_question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg, params_form): | |
if len(_chat_bot) <= 1 or not _chat_bot[-1][1]: | |
gr.Warning('No question for regeneration.') | |
return '', _image, _user_message, _assistant_message, _chat_bot, _app_cfg | |
if _app_cfg["chat_type"] == "Chat": | |
images_cnt = _app_cfg['images_cnt'] | |
videos_cnt = _app_cfg['videos_cnt'] | |
_question = _chat_bot[-1][0] | |
_chat_bot = _chat_bot[:-1] | |
_app_cfg['ctx'] = _app_cfg['ctx'][:-2] | |
files_cnts = check_has_videos(_question) | |
images_cnt -= files_cnts[0] | |
videos_cnt -= files_cnts[1] | |
_app_cfg['images_cnt'] = images_cnt | |
_app_cfg['videos_cnt'] = videos_cnt | |
upload_image_disabled = videos_cnt > 0 | |
upload_video_disabled = videos_cnt > 0 or images_cnt > 0 | |
_question, _chat_bot, _app_cfg = respond(_question, _chat_bot, _app_cfg, params_form) | |
return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg | |
else: | |
last_message = _chat_bot[-1][0] | |
last_image = None | |
last_user_message = '' | |
if last_message.text: | |
last_user_message = last_message.text | |
if last_message.files: | |
last_image = last_message.files[0].file.path | |
_chat_bot = _chat_bot[:-1] | |
_app_cfg['ctx'] = _app_cfg['ctx'][:-2] | |
_image, _user_message, _assistant_message, _chat_bot, _app_cfg = fewshot_respond(last_image, last_user_message, _chat_bot, _app_cfg, params_form) | |
return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg | |
def flushed(): | |
return gr.update(interactive=True) | |
def clear(txt_message, chat_bot, app_session): | |
txt_message.files.clear() | |
txt_message.text = '' | |
chat_bot = copy.deepcopy(init_conversation) | |
app_session['sts'] = None | |
app_session['ctx'] = [] | |
app_session['images_cnt'] = 0 | |
app_session['videos_cnt'] = 0 | |
return create_multimodal_input(), chat_bot, app_session, None, '', '' | |
def select_chat_type(_tab, _app_cfg): | |
_app_cfg["chat_type"] = _tab | |
return _app_cfg | |
init_conversation = [ | |
[ | |
None, | |
{ | |
# The first message of bot closes the typewriter. | |
"text": "You can talk to me now", | |
"flushing": False | |
} | |
], | |
] | |
css = """ | |
video { height: auto !important; } | |
.example label { font-size: 16px;} | |
""" | |
introduction = """ | |
## Features: | |
1. Chat with single image | |
2. Chat with multiple images | |
3. Chat with video | |
4. In-context few-shot learning | |
Click `How to use` tab to see examples. | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Tab(model_name): | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=300): | |
gr.Markdown(value=introduction) | |
params_form = create_component(form_radio, comp='Radio') | |
regenerate = create_component({'value': 'Regenerate'}, comp='Button') | |
clear_button = create_component({'value': 'Clear History'}, comp='Button') | |
with gr.Column(scale=3, min_width=500): | |
app_session = gr.State({'sts':None,'ctx':[], 'images_cnt': 0, 'videos_cnt': 0, 'chat_type': 'Chat'}) | |
chat_bot = mgr.Chatbot(label=f"Chat with {model_name}", value=copy.deepcopy(init_conversation), height=600, flushing=False, bubble_full_width=False) | |
with gr.Tab("Chat") as chat_tab: | |
txt_message = create_multimodal_input() | |
chat_tab_label = gr.Textbox(value="Chat", interactive=False, visible=False) | |
txt_message.submit( | |
respond, | |
[txt_message, chat_bot, app_session, params_form], | |
[txt_message, chat_bot, app_session] | |
) | |
with gr.Tab("Few Shot") as fewshot_tab: | |
fewshot_tab_label = gr.Textbox(value="Few Shot", interactive=False, visible=False) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(type="filepath", sources=["upload"]) | |
with gr.Column(scale=3): | |
user_message = gr.Textbox(label="User") | |
assistant_message = gr.Textbox(label="Assistant") | |
with gr.Row(): | |
add_demonstration_button = gr.Button("Add Example") | |
generate_button = gr.Button(value="Generate", variant="primary") | |
add_demonstration_button.click( | |
fewshot_add_demonstration, | |
[image_input, user_message, assistant_message, chat_bot, app_session], | |
[image_input, user_message, assistant_message, chat_bot, app_session] | |
) | |
generate_button.click( | |
fewshot_respond, | |
[image_input, user_message, chat_bot, app_session, params_form], | |
[image_input, user_message, assistant_message, chat_bot, app_session] | |
) | |
chat_tab.select( | |
select_chat_type, | |
[chat_tab_label, app_session], | |
[app_session] | |
) | |
chat_tab.select( # do clear | |
clear, | |
[txt_message, chat_bot, app_session], | |
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message] | |
) | |
fewshot_tab.select( | |
select_chat_type, | |
[fewshot_tab_label, app_session], | |
[app_session] | |
) | |
fewshot_tab.select( # do clear | |
clear, | |
[txt_message, chat_bot, app_session], | |
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message] | |
) | |
chat_bot.flushed( | |
flushed, | |
outputs=[txt_message] | |
) | |
regenerate.click( | |
regenerate_button_clicked, | |
[txt_message, image_input, user_message, assistant_message, chat_bot, app_session, params_form], | |
[txt_message, image_input, user_message, assistant_message, chat_bot, app_session] | |
) | |
clear_button.click( | |
clear, | |
[txt_message, chat_bot, app_session], | |
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message] | |
) | |
with gr.Tab("How to use"): | |
with gr.Column(): | |
with gr.Row(): | |
image_example = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/m_bear2.gif", label='1. Chat with single or multiple images', interactive=False, width=400, elem_classes="example") | |
example2 = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/video2.gif", label='2. Chat with video', interactive=False, width=400, elem_classes="example") | |
example3 = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/fshot.gif", label='3. Few shot', interactive=False, width=400, elem_classes="example") | |
# launch | |
#demo.launch(share=False, debug=True, show_api=False, server_port=8885, server_name="0.0.0.0") | |
demo.queue() | |
demo.launch() | |