Tonic commited on
Commit
eef83fc
·
verified ·
1 Parent(s): ab0267c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -16
app.py CHANGED
@@ -20,6 +20,8 @@ Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder
20
 
21
  device = "cuda"
22
  dtype = torch.float16
 
 
23
 
24
  processor = AutoProcessor.from_pretrained("StanfordAIMI/CheXagent-8b", trust_remote_code=True)
25
  generation_config = GenerationConfig.from_pretrained("StanfordAIMI/CheXagent-8b")
@@ -41,13 +43,12 @@ def generate(image, prompt):
41
 
42
  with gr.Blocks() as demo:
43
  gr.Markdown(title)
44
-
45
- with gr.Accordion("Custom Prompt Analysis"):
46
  with gr.Row():
47
  image_input_custom = gr.Image(type="pil")
48
  prompt_input_custom = gr.Textbox(label="Enter your custom prompt")
49
- generate_button_custom = gr.Button("Generate")
50
- output_text_custom = gr.Textbox(label="Response")
51
 
52
  def custom_generate(image, prompt):
53
  if isinstance(image, str) and os.path.exists(image):
@@ -57,18 +58,24 @@ with gr.Blocks() as demo:
57
  return generate(image, prompt)
58
 
59
  generate_button_custom.click(fn=custom_generate, inputs=[image_input_custom, prompt_input_custom], outputs=output_text_custom)
 
 
 
 
 
 
 
 
60
 
61
- example_prompt = "65 y/m Chronic cough and weight loss x 6 months. Chest X-rays normal. Consulted multiple pulmonologists with not much benefit. One wise pulmonologist thinks of GERD and sends him to the Gastro department. Can you name the classical finding here?"
62
- example_image_path = os.path.join(os.path.dirname(__file__), "hegde.jpg")
63
- gr.Examples(
64
- examples=[[example_image_path, example_prompt]],
65
- inputs=[image_input_custom, prompt_input_custom],
66
- outputs=[output_text_custom],
67
- fn=custom_generate,
68
- cache_examples=True
69
- )
70
 
71
- with gr.Accordion("Anatomical Feature Analysis"):
72
  anatomies = [
73
  "Airway", "Breathing", "Cardiac", "Diaphragm",
74
  "Everything else (e.g., mediastinal contours, bones, soft tissues, tubes, valves, and pacemakers)"
@@ -79,8 +86,20 @@ with gr.Blocks() as demo:
79
  generate_button_feature = gr.Button("Analyze Feature")
80
  output_text_feature = gr.Textbox(label="Response")
81
  generate_button_feature.click(fn=lambda image, feature: generate(image, f'Describe "{feature}"'), inputs=[image_input_feature, prompt_select], outputs=output_text_feature)
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
- with gr.Accordion("Common Abnormalities Analysis"):
84
  common_abnormalities = ["Lung Nodule", "Pleural Effusion", "Pneumonia"]
85
  with gr.Row():
86
  image_input_abnormality = gr.Image(type="pil")
@@ -88,5 +107,16 @@ with gr.Blocks() as demo:
88
  generate_button_abnormality = gr.Button("Analyze Abnormality")
89
  output_text_abnormality = gr.Textbox(label="Response")
90
  generate_button_abnormality.click(fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'), inputs=[image_input_abnormality, abnormality_select], outputs=output_text_abnormality)
91
-
 
 
 
 
 
 
 
 
 
 
 
92
  demo.launch()
 
20
 
21
  device = "cuda"
22
  dtype = torch.float16
23
+ example_images = ["00000174_003.png", "00006596_000.png", "00006663_000.png",
24
+ "00012976_002.png", "00018401_000.png", "00019799_000.png"]
25
 
26
  processor = AutoProcessor.from_pretrained("StanfordAIMI/CheXagent-8b", trust_remote_code=True)
27
  generation_config = GenerationConfig.from_pretrained("StanfordAIMI/CheXagent-8b")
 
43
 
44
  with gr.Blocks() as demo:
45
  gr.Markdown(title)
46
+ with gr.Accordion("Custom Prompt Analysis", open=False):
 
47
  with gr.Row():
48
  image_input_custom = gr.Image(type="pil")
49
  prompt_input_custom = gr.Textbox(label="Enter your custom prompt")
50
+ generate_button_custom = gr.Button("Generate")
51
+ output_text_custom = gr.Textbox(label="Response")
52
 
53
  def custom_generate(image, prompt):
54
  if isinstance(image, str) and os.path.exists(image):
 
58
  return generate(image, prompt)
59
 
60
  generate_button_custom.click(fn=custom_generate, inputs=[image_input_custom, prompt_input_custom], outputs=output_text_custom)
61
+ custom_prompt_examples = [
62
+ [os.path.join(os.path.dirname(__file__), img), "You are an expert X-Ray Analyst, describe this chest x-ray in detail focussing on the lung condition:"]
63
+ for img in example_images
64
+ ]
65
+
66
+ # example_prompt = "65 y/m Chronic cough and weight loss x 6 months. Chest X-rays normal. Consulted multiple pulmonologists with not much benefit. One wise pulmonologist thinks of GERD and sends him to the Gastro department. Can you name the classical finding here?"
67
+ # example_image_path = os.path.join(os.path.dirname(__file__), "hegde.jpg")
68
+ with gr.Accordion("Examples", open=False):
69
 
70
+ gr.Examples(
71
+ examples=custom_prompt_examples,
72
+ inputs=[image_input_custom, prompt_input_custom],
73
+ outputs=[output_text_custom],
74
+ fn=custom_generate,
75
+ cache_examples=True
76
+ )
 
 
77
 
78
+ with gr.Accordion("Anatomical Feature Analysis", open=False):
79
  anatomies = [
80
  "Airway", "Breathing", "Cardiac", "Diaphragm",
81
  "Everything else (e.g., mediastinal contours, bones, soft tissues, tubes, valves, and pacemakers)"
 
86
  generate_button_feature = gr.Button("Analyze Feature")
87
  output_text_feature = gr.Textbox(label="Response")
88
  generate_button_feature.click(fn=lambda image, feature: generate(image, f'Describe "{feature}"'), inputs=[image_input_feature, prompt_select], outputs=output_text_feature)
89
+ anatomical_feature_examples = [
90
+ [os.path.join(os.path.dirname(__file__), img), "Airway"]
91
+ for img in example_images
92
+ ]
93
+ with gr.Accordion("Examples", open=False):
94
+ gr.Examples(
95
+ examples=anatomical_feature_examples,
96
+ inputs=[image_input_feature, prompt_select],
97
+ outputs=[output_text_feature],
98
+ fn=lambda image, feature: generate(image, f'Describe "{feature}"'),
99
+ cache_examples=True
100
+ )
101
 
102
+ with gr.Accordion("Common Abnormalities Analysis", open=False):
103
  common_abnormalities = ["Lung Nodule", "Pleural Effusion", "Pneumonia"]
104
  with gr.Row():
105
  image_input_abnormality = gr.Image(type="pil")
 
107
  generate_button_abnormality = gr.Button("Analyze Abnormality")
108
  output_text_abnormality = gr.Textbox(label="Response")
109
  generate_button_abnormality.click(fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'), inputs=[image_input_abnormality, abnormality_select], outputs=output_text_abnormality)
110
+ common_abnormalities_examples = [
111
+ [os.path.join(os.path.dirname(__file__), img), "Lung Nodule"]
112
+ for img in example_images
113
+ ]
114
+ with gr.Accordion("Examples", open=False):
115
+ gr.Examples(
116
+ examples=common_abnormalities_examples,
117
+ inputs=[image_input_abnormality, abnormality_select],
118
+ outputs=[output_text_abnormality],
119
+ fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'),
120
+ cache_examples=True
121
+ )
122
  demo.launch()