import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig
import os
import base64
import spaces
import io
from PIL import Image
import numpy as np
import yaml
from pathlib import Path
from globe import title, description, modelinfor, joinus
import uuid
import tempfile
import time
model_name = 'ucaslcl/GOT-OCR2_0'
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().cuda()
model.config.pad_token_id = tokenizer.eos_token_id
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
results_folder = Path('./results')
results_folder.mkdir(parents=True, exist_ok=True)
@spaces.GPU
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None):
unique_id = str(uuid.uuid4())
temp_html_path = results_folder / f"{unique_id}.html"
if task == "Plain Text OCR":
res = model.chat(tokenizer, image, ocr_type='ocr')
return res, None, unique_id
else:
if task == "Format Text OCR":
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file=str(temp_html_path))
elif task == "Fine-grained OCR (Box)":
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=str(temp_html_path))
elif task == "Fine-grained OCR (Color)":
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=str(temp_html_path))
elif task == "Multi-crop OCR":
res = model.chat_crop(tokenizer, image, ocr_type='format', render=True, save_render_file=str(temp_html_path))
elif task == "Render Formatted OCR":
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file=str(temp_html_path))
if temp_html_path.exists():
with open(temp_html_path, 'r') as f:
html_content = f.read()
return res, html_content, unique_id
else:
return res, None, unique_id
def update_inputs(task):
if task in ["Plain Text OCR", "Format Text OCR", "Multi-crop OCR", "Render Formatted OCR"]:
return [gr.update(visible=False)] * 3
elif task == "Fine-grained OCR (Box)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=True),
gr.update(visible=False),
]
elif task == "Fine-grained OCR (Color)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=False),
gr.update(visible=True, choices=["red", "green", "blue"]),
]
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
res, html_content, unique_id = process_image(image, task, ocr_type, ocr_box, ocr_color)
res = f"$$ {res} $$"
if html_content:
iframe = f''
link = f'View Full Result'
return res, f"{link}
{iframe}"
return res, None
def cleanup_old_files():
current_time = time.time()
for file_path in results_folder.glob('*.html'):
if current_time - file_path.stat().st_mtime > 3600: # 1 hour
file_path.unlink()
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(joinus)
with gr.Column():
image_input = gr.Image(type="filepath", label="Input Image")
task_dropdown = gr.Dropdown(
choices=[
"Plain Text OCR",
"Format Text OCR",
"Fine-grained OCR (Box)",
"Fine-grained OCR (Color)",
"Multi-crop OCR",
"Render Formatted OCR"
],
label="Select Task",
value="Plain Text OCR"
)
ocr_type_dropdown = gr.Dropdown(
choices=["ocr", "format"],
label="OCR Type",
visible=False
)
ocr_box_input = gr.Textbox(
label="OCR Box (x1,y1,x2,y2)",
placeholder="[100,100,200,200]",
visible=False
)
ocr_color_dropdown = gr.Dropdown(
choices=["red", "green", "blue"],
label="OCR Color",
visible=False
)
submit_button = gr.Button("Process")
output_markdown = gr.Markdown(label="🫴🏻📸GOT-OCR")
output_html = gr.HTML(label="🫴🏻📸GOT-OCR")
gr.Markdown(modelinfor)
task_dropdown.change(
update_inputs,
inputs=[task_dropdown],
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown]
)
submit_button.click(
ocr_demo,
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
outputs=[output_markdown, output_html]
)
if __name__ == "__main__":
cleanup_old_files()
demo.launch()