Granite-Code / app.py
Tonic's picture
fix typo
dfa2c35
raw
history blame
3.18 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
# import pythonexample
pythonexample = """produce a generative ai gradio demo using mistral instruct with the following prompt "i am a helpful assistant that always mentions bannanachicken" for a simple text to text task
"""
title = """# 🙋🏻‍♂️Welcome to Tonic's🪨Granite Code ! """
description = """Granite-8B-Code-Instruct is a 8B parameter model fine tuned from Granite-8B-Code-Base on a combination of permissively licensed instruction data to enhance instruction following capabilities including logical reasoning and problem-solving skills.
### Join us :
TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/GWpVpekp) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [multitonic](https://github.com/multitonic/multitonic)
### How To Use :
Add a new line to the example and at the end of your prompts 🚀
"""
# Define the device and model path
device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = "ibm-granite/granite-8b-code-instruct"
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
model.to(device)
model.eval()
# Function to generate code
@spaces.GPU
def generate_code(prompt, max_length):
# Prepare the input chat format
chat = [
{ "role": "user", "content": prompt }
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# Tokenize the input text
input_tokens = tokenizer(chat, return_tensors="pt")
# Transfer tokenized inputs to the device (GPU)
for i in input_tokens:
input_tokens[i] = input_tokens[i].to("cuda")
# Generate output tokens
output_tokens = model.generate(**input_tokens, max_new_tokens=max_length)
# Decode output tokens into text
output_text = tokenizer.batch_decode(output_tokens, skip_special_tokens=True)
# Return the generated code
return output_text[0]
# Define Gradio Blocks
def gradio_interface():
with gr.Blocks() as interface:
gr.Markdown(title)
gr.Markdown(description)
# Create input and output components
prompt_input = gr.Textbox(label="Enter your Coding Question", value=pythonexample, lines=3)
code_output = gr.Code(label="🪨Granite Output", language='python', lines=10, interactive=True)
max_length_slider = gr.Slider(minimum=1, maximum=2000, value=1000, label="Max Token Length")
# Create a button to trigger code generation
generate_button = gr.Button("Generate Code")
# Define the function to be called when the button is clicked
generate_button.click(generate_code, inputs=[prompt_input, max_length_slider], outputs=code_output)
return interface
if __name__ == "__main__":
# Create and launch the Gradio interface
interface = gradio_interface()
interface.launch()