NexusRaven2 / app.py
Tonic's picture
Update app.py
a535175 verified
raw
history blame
3.17 kB
import spaces
import gradio as gr
from transformers import pipeline
import os
import torch
title = """# 🙋🏻‍♂️Welcome to🌟Tonic's Nexus🐦‍⬛Raven"""
description = """You can build with this endpoint using Nexus Raven. The demo is still a work in progress but we hope to add some endpoints for commonly used functions such as intention mappers and audiobook processing.
You can also use Nexus🐦‍⬛Raven on your laptop & by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/NexusRaven2?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
raven_pipeline = pipeline(
"text-generation",
model="Nexusflow/NexusRaven-V2-13B",
torch_dtype="auto",
device_map="auto",
)
@spaces.GPU(enable_queue=True)
def process_text(input_text: str) -> str:
prompt = f"User Query: {input_text}<human_end>"
result = raven_pipeline(prompt, temperature=0.001, max_new_tokens=300, return_full_text=False, do_sample=True)[0]["generated_text"]#.replace("Call:", "").strip()
# torch.cuda.empty_cache()
return result
def create_interface():
with gr.Blocks() as app:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
input_text = gr.Textbox(label="Input Text")
submit_button = gr.Button("Submit")
output_text = gr.Textbox(label="Nexus🐦‍⬛Raven")
submit_button.click(converter.process_text, inputs=input_text, outputs=output_text)
return app
def main():
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
input_text = gr.Code( language='python', label="Input your functions then your task :")
submit_button = gr.Button("Submit")
output_text = gr.Code( language='python' , label="Nexus🐦‍⬛Raven")
submit_button.click(process_text, inputs=input_text, outputs=output_text)
demo.launch()
if __name__ == "__main__":
main()