Tonic commited on
Commit
7c6dcb8
·
verified ·
1 Parent(s): b4e9043

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -1,18 +1,17 @@
1
- import spaces
2
  import json
3
  import torch
4
  import gradio as gr
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
 
7
- title = """# 🙋🏻‍♂️ Welcome to Tonic's Salesforce/Xlam-7B-r"""
8
  description = """
9
- 🎬 Large Action Models (LAMs) are advanced large language models designed to enhance decision-making and translate user intentions into executable actions that interact with the world. LAMs autonomously plan and execute tasks to achieve specific goals, serving as the brains of AI agents. They have the potential to automate workflow processes across various domains, making them invaluable for a wide range of applications.Check our the Salesforce/xLAM models : [🤗 xLAM-1b-fc-r](https://huggingface.co/Salesforce/xLAM-1b-fc-r) | [🤗 xLAM-1b-fc-r-GGUF](https://huggingface.co/Salesforce/xLAM-1b-fc-r-gguf) [🤗 xLAM-7b-fc-r](https://huggingface.co/Salesforce/xLAM-7b-fc-r) | [🤗 xLAM-7b-fc-r-GGUF](https://huggingface.co/Salesforce/xLAM-7b-fc-r-gguf) [🤗 xLAM-7b-r ](https://huggingface.co/Salesforce/xLAM-7b-r) | [🤗 xLAM-8x7b-r](https://huggingface.co/Salesforce/xLAM-8x7b-r) [🤗 xLAM-8x22b-r](https://huggingface.co/Salesforce/xLAM-8x22b-r) |
10
  ### Join us :
11
  🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
12
  """
13
 
14
  # Load model and tokenizer
15
- model_name = "Salesforce/xLAM-7b-r"
16
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
17
  tokenizer = AutoTokenizer.from_pretrained(model_name)
18
 
@@ -106,7 +105,6 @@ def build_prompt(task_instruction: str, format_instruction: str, tools: list, qu
106
  prompt += build_conversation_history_prompt(conversation_history)
107
  return prompt
108
 
109
- @spaces.GPU
110
  def generate_response(tools_input, query):
111
  try:
112
  tools = json.loads(tools_input)
 
 
1
  import json
2
  import torch
3
  import gradio as gr
4
  from transformers import AutoModelForCausalLM, AutoTokenizer
5
 
6
+ title = """# 🙋🏻‍♂️ Welcome to Tonic's On 📲🎬🦀Device Function Calling"""
7
  description = """
8
+ 📲🎬🦀Salesforce/xLAM-1b-fc-r is on device , meaning you can put it in offline apps and more! 🎬 Large Action Models (LAMs) are advanced large language models designed to enhance decision-making and translate user intentions into executable actions that interact with the world. LAMs autonomously plan and execute tasks to achieve specific goals, serving as the brains of AI agents. They have the potential to automate workflow processes across various domains, making them invaluable for a wide range of applications.Check our the Salesforce/xLAM models : [🤗 xLAM-1b-fc-r](https://huggingface.co/Salesforce/xLAM-1b-fc-r) | [🤗 xLAM-1b-fc-r-GGUF](https://huggingface.co/Salesforce/xLAM-1b-fc-r-gguf) [🤗 xLAM-7b-fc-r](https://huggingface.co/Salesforce/xLAM-7b-fc-r) | [🤗 xLAM-7b-fc-r-GGUF](https://huggingface.co/Salesforce/xLAM-7b-fc-r-gguf) [🤗 xLAM-7b-r ](https://huggingface.co/Salesforce/xLAM-7b-r) | [🤗 xLAM-8x7b-r](https://huggingface.co/Salesforce/xLAM-8x7b-r) [🤗 xLAM-8x22b-r](https://huggingface.co/Salesforce/xLAM-8x22b-r) |
9
  ### Join us :
10
  🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
11
  """
12
 
13
  # Load model and tokenizer
14
+ model_name = "Salesforce/xLAM-1b-fc-r"
15
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
16
  tokenizer = AutoTokenizer.from_pretrained(model_name)
17
 
 
105
  prompt += build_conversation_history_prompt(conversation_history)
106
  return prompt
107
 
 
108
  def generate_response(tools_input, query):
109
  try:
110
  tools = json.loads(tools_input)