File size: 11,549 Bytes
337337b
 
 
 
 
 
 
 
f570b2f
337337b
 
 
f570b2f
9a64677
55d5adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9ec3b8
 
 
 
9a64677
 
337337b
f570b2f
 
337337b
 
f570b2f
337337b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55d5adb
337337b
 
 
 
 
 
55d5adb
337337b
f570b2f
 
 
e562e7a
f570b2f
 
 
 
 
e562e7a
337337b
e562e7a
f570b2f
337337b
55d5adb
337337b
 
 
55d5adb
337337b
55d5adb
 
 
 
 
 
 
337337b
55d5adb
 
 
e9ec3b8
337337b
55d5adb
 
 
 
337337b
 
 
e9ec3b8
55d5adb
 
 
 
 
 
 
 
 
 
 
e9ec3b8
337337b
 
55d5adb
 
 
 
 
337337b
 
55d5adb
 
 
337337b
 
55d5adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337337b
55d5adb
 
 
 
 
 
 
337337b
55d5adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import torch
import torch.nn as nn
import torch.nn.functional as F
from safetensors import safe_open
import json
import gradio as gr
from PIL import Image
import numpy as np
from huggingface_hub import snapshot_download
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
import spaces

title = "# 🖼️ Pixtral Image Similarity Demo"
description = """
Upload two images to compare their similarity based on the embeddings produced by the Pixtral model.
This demo uses the vision encoder part of the Pixtral model to generate embeddings and then calculates
the cosine similarity between them.

### How it works:
1. Upload two images
2. The Pixtral vision encoder processes both images
3. The cosine similarity between the embeddings is calculated
4. The similarity score is displayed (1.0 means identical, 0.0 means completely different)

### Note:
This is a demonstration of the vision encoder capabilities and does not use the full Pixtral model for text generation.

### Join us : 
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""

# Download model files
model_path = snapshot_download(repo_id="mistral-community/pixtral-12b-240910")

# Load model parameters and tokenizer configuration
with open(f'{model_path}/params.json', 'r') as f:
    params = json.load(f)

with open(f'{model_path}/tekken.json', 'r') as f:
    tokenizer_config = json.load(f)

class GELU(nn.Module):
    def __init__(self, dim_in, dim_out, approximate='none', bias=True):
        super().__init__()
        self.linear = nn.Linear(dim_in, dim_out, bias=bias)
        self.approximate = approximate

    def forward(self, x):
        if self.approximate == 'tanh':
            return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3))))
        else:
            return F.gelu(self.linear(x))

class Rope2D(nn.Module):
    def __init__(self, dim, max_position_embeddings=1024, base=10000):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(self.max_seq_len_cached, dtype=self.inv_freq.dtype)
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)

    def forward(self, x, seq_len=None):
        if seq_len > self.max_seq_len_cached:
            self.max_seq_len_cached = seq_len
            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
            self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
        return (
            self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
            self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
        )

class VisionEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed = nn.Conv2d(config['num_channels'], config['hidden_size'], kernel_size=config['patch_size'], stride=config['patch_size'])
        self.rope = Rope2D(config['hidden_size'] // config['num_attention_heads'], base=config['rope_theta'])
        self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=config['hidden_size'], nhead=config['num_attention_heads'], dim_feedforward=config['intermediate_size']) for _ in range(config['num_hidden_layers'])])
        self.norm = nn.LayerNorm(config['hidden_size'])
        self.gelu = GELU(config['hidden_size'], config['hidden_size'])

    def forward(self, pixel_values):
        x = self.embed(pixel_values)
        b, c, h, w = x.shape
        x = x.flatten(2).transpose(1, 2)
        cos, sin = self.rope(x, seq_len=h*w)
        for layer in self.layers:
            x = layer(x)
        x = self.norm(x)
        x = self.gelu(x)
        return x


class PixtralModel(nn.Module):
    def __init__(self, params):
        super().__init__()
        self.vision_encoder = VisionEncoder(params['vision_encoder'])

    def forward(self, image):
        return self.vision_encoder(image)

def load_model(params, model_path):
    model = PixtralModel(params)
    
    with safe_open(f'{model_path}/consolidated.safetensors', framework="pt", device="cpu") as f:
        for name, param in model.named_parameters():
            if name in f.keys():
                param.data = f.get_tensor(name)
    
    model.eval()
    return model

# Initialize the model
model = load_model(params, model_path)

def preprocess_image(image):
    image = image.convert('RGB')
    image = image.resize((params['vision_encoder']['image_size'], params['vision_encoder']['image_size']))
    image_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float() / 255.0
    return image_tensor

@spaces.GPU
def calculate_similarity(image1, image2):
    # Preprocess images
    tensor1 = preprocess_image(image1).cuda()
    tensor2 = preprocess_image(image2).cuda()

    # Generate embeddings
    with torch.no_grad():
        model.cuda()
        embedding1 = model(tensor1).mean(dim=1)  # Average over spatial dimensions
        embedding2 = model(tensor2).mean(dim=1)
        model.cpu()

    # Calculate cosine similarity
    similarity = F.cosine_similarity(embedding1, embedding2).item()

    return similarity

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown(title)
    gr.Markdown("## Model Details")
    gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
    gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
    gr.Markdown(f"- Number of Attention Heads: {params['vision_encoder']['num_attention_heads']}")
    gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
    gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")
    gr.Markdown("## How it works")
    gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
    gr.Markdown("2. The encoder uses GELU activation in its layers.")
    gr.Markdown("3. The encoded image and the prompt are used to generate descriptive text.")

    gr.Markdown(description)
    
    with gr.Row():
        image1_input = gr.Image(type="pil", label="Image 1")
        image2_input = gr.Image(type="pil", label="Image 2")
    
    submit_btn = gr.Button("📸🌬️Calculate Similarity")
    similarity_output = gr.Number(label="Similarity Score (0.0 to 1.0)")
    
    submit_btn.click(
        fn=calculate_similarity,
        inputs=[image1_input, image2_input],
        outputs=[similarity_output]
    )
    
if __name__ == "__main__":
    demo.launch()

# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# from safetensors import safe_open
# import json
# import gradio as gr
# from PIL import Image
# import numpy as np
# from huggingface_hub import snapshot_download
# from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageChunk
# from mistral_common.protocol.instruct.request import ChatCompletionRequest
# from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
# import spaces

# title = "# **WIP / DEMO** 🙋🏻‍♂️Welcome to Tonic's Pixtral Image-to-Text Model Demo"


# # Download model files
# model_path = snapshot_download(repo_id="mistral-community/pixtral-12b-240910")

# # Load model parameters and tokenizer configuration
# with open(f'{model_path}/params.json', 'r') as f:
#     params = json.load(f)

# with open(f'{model_path}/tekken.json', 'r') as f:
#     tokenizer_config = json.load(f)

# class PixtralModel(nn.Module):
#     def __init__(self, params):
#         super().__init__()
#         self.vision_encoder = VisionEncoder(params['vision_encoder'])
#         # Add text generation components here

#     def forward(self, image):
#         vision_output = self.vision_encoder(image)
#         # Add text generation logic here
#         return vision_output

# def load_model(params, model_path):
#     model = PixtralModel(params)
    
#     with safe_open(f'{model_path}/consolidated.safetensors', framework="pt", device="cpu") as f:
#         for name, param in model.named_parameters():
#             if name in f.keys():
#                 param.data = f.get_tensor(name)
    
#     model.eval()
#     return model

# # Initialize the model
# model = load_model(params, model_path)
# tokenizer = MistralTokenizer.from_model("pixtral")

# @spaces.GPU
# def process_image_and_text(image, prompt):
#     # Prepare the image
#     image = image.convert('RGB')
#     image = image.resize((params['vision_encoder']['image_size'], params['vision_encoder']['image_size']))
#     image_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float() / 255.0
#     image_tensor = image_tensor.cuda()

#     # Tokenize the input
#     tokenized = tokenizer.encode_chat_completion(
#         ChatCompletionRequest(
#             messages=[
#                 UserMessage(
#                     content=[
#                         TextChunk(text=prompt),
#                         ImageChunk(image=image),
#                     ]
#                 )
#             ],
#             model="pixtral",
#         )
#     )
#     tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images

#     # Process the image and generate text
#     with torch.no_grad():
#         model.cuda() 
#         vision_output = model(image_tensor)
#         model.cpu()
#         generated_text = f"Generated text based on the image and prompt: {prompt}"

#     return generated_text, len(tokens), len(images)

# # Gradio interface
# with gr.Blocks() as demo:
#     gr.Markdown(title)
    

#     gr.Markdown(description)
#     with gr.Row():
#         with gr.Column(scale=1):
#             input_image = gr.Image(type="pil")
#             input_prompt = gr.Textbox(label="Prompt")
#             submit_btn = gr.Button("Generate Text")
        
#         with gr.Column(scale=1):
#             output_text = gr.Textbox(label="Generated Text")
#             token_count = gr.Number(label="Number of Tokens")
#             image_count = gr.Number(label="Number of Images")
    
#     submit_btn.click(
#         fn=process_image_and_text,
#         inputs=[input_image, input_prompt],
#         outputs=[output_text, token_count, image_count]
#     )
    
# if __name__ == "__main__":
#     demo.launch()