File size: 13,100 Bytes
337337b
 
 
 
 
 
 
 
f570b2f
337337b
 
 
f570b2f
6408837
 
9a64677
24b8c6e
55d5adb
6408837
 
 
55d5adb
e9ec3b8
 
 
 
6408837
24b8c6e
f570b2f
337337b
c6378e6
f570b2f
337337b
 
6408837
 
337337b
6408837
 
 
 
 
 
24b8c6e
6408837
24b8c6e
 
cbd9440
 
24b8c6e
cbd9440
 
24b8c6e
6408837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337337b
6408837
 
 
cbd9440
6408837
 
337337b
6408837
 
337337b
6408837
 
 
 
 
 
24b8c6e
6408837
24b8c6e
6408837
 
 
 
 
 
 
24b8c6e
6408837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337337b
6408837
 
 
 
337337b
 
6408837
 
 
 
 
 
 
 
 
 
337337b
 
 
6408837
c6378e6
6408837
24b8c6e
c6378e6
6408837
c6378e6
6408837
 
 
 
 
 
 
 
 
 
 
 
337337b
f570b2f
 
e562e7a
f570b2f
 
 
 
e562e7a
337337b
f570b2f
6408837
337337b
55d5adb
2bdacd4
 
337337b
 
 
55d5adb
337337b
2bdacd4
 
 
24b8c6e
 
 
2bdacd4
 
 
24b8c6e
2bdacd4
 
6408837
24b8c6e
 
 
 
 
 
 
 
 
2bdacd4
 
24b8c6e
 
2bdacd4
 
 
 
55d5adb
2bdacd4
24b8c6e
 
 
 
55d5adb
24b8c6e
 
337337b
2bdacd4
24b8c6e
2bdacd4
 
 
337337b
2bdacd4
e9ec3b8
55d5adb
c6378e6
 
 
55d5adb
 
c6378e6
55d5adb
 
 
 
6408837
 
2bdacd4
e9ec3b8
337337b
6408837
 
 
 
 
 
24b8c6e
6408837
 
 
 
 
 
 
 
 
2bdacd4
6408837
 
55d5adb
6408837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import torch
import torch.nn as nn
import torch.nn.functional as F
from safetensors import safe_open
import json
import gradio as gr
from PIL import Image
import numpy as np
from huggingface_hub import snapshot_download
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
import spaces
import math
from typing import List, Optional, Tuple

title = "# **WIP / DEMO** 🙋🏻‍♂️Welcome to Tonic's Pixtral Model Demo"
description = """
This demo showcases two capabilities of the Pixtral model:
1. Image-to-Text Generation
2. Image Similarity Comparison

### Join us : 
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""

model_path = snapshot_download(repo_id="mistralai/Pixtral-12B-2409")

with open(f'{model_path}/params.json', 'r') as f:
    params = json.load(f)

with open(f'{model_path}/tekken.json', 'r') as f:
    tokenizer_config = json.load(f)

class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight

def precompute_freqs_cis_2d(dim: int, height: int, width: int, theta: float) -> torch.Tensor:
    freqs = 1.0 / (theta**(torch.arange(0, dim, 2).float() / dim))
    h = torch.arange(height)
    w = torch.arange(width)
    freqs_h = torch.outer(h, freqs[::2]).float()
    freqs_w = torch.outer(w, freqs[1::2]).float()
    freqs_2d = torch.cat([freqs_h[:, None, :].repeat(1, width, 1), freqs_w[None, :, :].repeat(height, 1, 1)], dim=-1)
    return torch.polar(torch.ones_like(freqs_2d), freqs_2d)

def apply_rotary_emb_vit(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
    freqs_cis = freqs_cis.view(*freqs_cis.shape[:2], 1, freqs_cis.shape[-1])
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)

class Attention(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.n_heads = args['num_attention_heads']
        self.head_dim = args['hidden_size'] // args['num_attention_heads']
        self.wq = nn.Linear(args['hidden_size'], args['hidden_size'], bias=False)
        self.wk = nn.Linear(args['hidden_size'], args['hidden_size'], bias=False)
        self.wv = nn.Linear(args['hidden_size'], args['hidden_size'], bias=False)
        self.wo = nn.Linear(args['hidden_size'], args['hidden_size'], bias=False)

    def forward(self, x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
        batch, patches, _ = x.shape
        q, k, v = self.wq(x), self.wk(x), self.wv(x)
        q = q.reshape(batch, patches, self.n_heads, self.head_dim)
        k = k.reshape(batch, patches, self.n_heads, self.head_dim)
        v = v.reshape(batch, patches, self.n_heads, self.head_dim)
        q, k = apply_rotary_emb_vit(q, k, freqs_cis=freqs_cis)
        scores = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(self.head_dim)
        attn = F.softmax(scores, dim=-1)
        out = torch.matmul(attn, v)
        out = out.reshape(batch, patches, self.n_heads * self.head_dim)
        return self.wo(out)

class FeedForward(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.w1 = nn.Linear(args['hidden_size'], args['intermediate_size'], bias=False)
        self.w2 = nn.Linear(args['intermediate_size'], args['hidden_size'], bias=False)
        self.w3 = nn.Linear(args['hidden_size'], args['intermediate_size'], bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.w2(F.silu(self.w1(x)) * self.w3(x))

class TransformerBlock(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.attention = Attention(args)
        self.feed_forward = FeedForward(args)
        self.attention_norm = RMSNorm(args['hidden_size'], eps=1e-5)
        self.ffn_norm = RMSNorm(args['hidden_size'], eps=1e-5)

    def forward(self, x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
        r = self.attention(self.attention_norm(x), freqs_cis=freqs_cis)
        h = x + r
        r = self.feed_forward(self.ffn_norm(h))
        out = h + r
        return out

class VisionTransformer(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.args = args
        self.patch_conv = nn.Conv2d(args['num_channels'], args['hidden_size'], kernel_size=args['patch_size'], stride=args['patch_size'], bias=False)
        self.ln_pre = RMSNorm(args['hidden_size'], eps=1e-5)
        self.transformer = nn.ModuleList([TransformerBlock(args) for _ in range(args['num_hidden_layers'])])
        self.max_patches_per_side = args['image_size'] // args['patch_size']
        self._freqs_cis = None

    @property
    def freqs_cis(self) -> torch.Tensor:
        if self._freqs_cis is None:
            self._freqs_cis = precompute_freqs_cis_2d(
                dim=self.args['hidden_size'] // self.args['num_attention_heads'],
                height=self.max_patches_per_side,
                width=self.max_patches_per_side,
                theta=self.args['rope_theta'],
            )
        return self._freqs_cis.to(self.patch_conv.weight.device)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.patch_conv(x)
        x = x.flatten(2).transpose(1, 2)
        x = self.ln_pre(x)
        freqs_cis = self.freqs_cis
        for layer in self.transformer:
            x = layer(x, freqs_cis=freqs_cis)
        return x

class VisionLanguageAdapter(nn.Module):
    def __init__(self, args, dim: int):
        super().__init__()
        self.w_in = nn.Linear(args['hidden_size'], dim, bias=True)
        self.gelu = nn.GELU()
        self.w_out = nn.Linear(dim, dim, bias=True)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.w_out(self.gelu(self.w_in(x)))

class PixtralModel(nn.Module):
    def __init__(self, params):
        super().__init__()
        self.vision_encoder = VisionTransformer(params['vision_encoder'])
        self.vision_language_adapter = VisionLanguageAdapter(params['vision_encoder'], params['dim'])
        self.language_model = nn.TransformerDecoder(
            nn.TransformerDecoderLayer(d_model=params['dim'], nhead=params['n_heads'], dim_feedforward=params['hidden_dim']),
            num_layers=params['n_layers']
        )
        self.lm_head = nn.Linear(params['dim'], params['vocab_size'], bias=False)

    def forward(self, image, input_ids=None):
        vision_output = self.vision_encoder(image)
        vision_output = self.vision_language_adapter(vision_output)
        
        if input_ids is not None:
            tgt = self.lm_head.weight[input_ids].transpose(0, 1)
            output = self.language_model(tgt, vision_output)
            logits = self.lm_head(output)
            return logits
        else:
            return vision_output

def load_model(params, model_path):
    model = PixtralModel(params)
    with safe_open(f'{model_path}/consolidated.safetensors', framework="pt", device="cpu") as f:
        for name, param in model.named_parameters():
            if name in f.keys():
                param.data = f.get_tensor(name)
    model.eval()
    return model

model = load_model(params, model_path)
tokenizer = MistralTokenizer.from_model("pixtral")

def preprocess_image(image):
    if image is None:
        raise ValueError("No image provided")
    image = image.convert('RGB')
    image = image.resize((params['vision_encoder']['image_size'], params['vision_encoder']['image_size']))
    image_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float() / 255.0
    return image_tensor

@spaces.GPU(duration=120)
def generate_text(image, prompt, max_tokens):
    try:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        image_tensor = preprocess_image(image).to(device)
        model.to(device)

        tokenized = tokenizer.encode_chat_completion(
            ChatCompletionRequest(
                messages=[UserMessage(content=[TextChunk(text=prompt), ImageChunk(image=image)])],
                model="pixtral",
            )
        )
        input_ids = torch.tensor(tokenized.tokens).unsqueeze(0).to(device)

        for _ in range(max_tokens):
            logits = model(image_tensor, input_ids)
            next_token_logits = logits[0, -1, :]
            next_token = torch.argmax(next_token_logits, dim=-1)
            input_ids = torch.cat([input_ids, next_token.unsqueeze(0).unsqueeze(0)], dim=-1)
            if next_token.item() == tokenizer.eos_token_id:
                break

        generated_text = tokenizer.decode(input_ids[0].tolist())
        # model.to("cpu")
        return generated_text, len(input_ids[0]), 1
    except Exception as e:
        return f"Error: {str(e)}", 0, 0

@spaces.GPU(duration=60)
def calculate_similarity(image1, image2):
    try:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        tensor1 = preprocess_image(image1).to(device)
        tensor2 = preprocess_image(image2).to(device)
        model.to(device)

        embedding1 = model(tensor1).mean(dim=1)
        embedding2 = model(tensor2).mean(dim=1)

        similarity = F.cosine_similarity(embedding1, embedding2).item()
        # model.to("cpu")
        return similarity
    except Exception as e:
        return f"Error: {str(e)}"

with gr.Blocks() as demo:
    gr.Markdown(title)
    gr.Markdown("## Model Details")
    gr.Markdown(f"- Model Dimension: {params['dim']}")
    gr.Markdown(f"- Number of Layers: {params['n_layers']}")
    gr.Markdown(f"- Number of Attention Heads: {params['n_heads']}")
    gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
    gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
    gr.Markdown(f"- Number of Vision Encoder Attention Heads: {params['vision_encoder']['num_attention_heads']}")
    gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
    gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")
    gr.Markdown("## How it works")
    gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
    gr.Markdown("2. The encoder uses SiLU activation in its feed-forward layers.")
    gr.Markdown("3. The encoded image is used for text generation or similarity comparison.")

    gr.Markdown(description)
    
    with gr.Tabs():
        with gr.TabItem("Image-to-Text Generation"):
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(type="pil", label="Input Image")
                    input_prompt = gr.Textbox(label="Prompt")
                    max_tokens_slider = gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Tokens")
                    submit_btn = gr.Button("Generate Text")
                
                with gr.Column():
                    output_text = gr.Textbox(label="Generated Text")
                    token_count = gr.Number(label="Number of Tokens")
                    image_count = gr.Number(label="Number of Images Processed")
            
            submit_btn.click(
                fn=generate_text,
                inputs=[input_image, input_prompt, max_tokens_slider],
                outputs=[output_text, token_count, image_count]
            )
        
        with gr.TabItem("Image Similarity Comparison"):
            with gr.Row():
                image1_input = gr.Image(type="pil", label="Image 1")
                image2_input = gr.Image(type="pil", label="Image 2")
            
            similarity_btn = gr.Button("📸🌬️Calculate Similarity")
            similarity_output = gr.Number(label="Similarity Score (0.0 to 1.0)")
            
            similarity_btn.click(
                fn=calculate_similarity,
                inputs=[image1_input, image2_input],
                outputs=[similarity_output]
            )

if __name__ == "__main__":
    demo.launch()