Spaces:
Paused
Paused
add vllm
Browse files
app.py
CHANGED
@@ -43,15 +43,21 @@ with open(f'{model_path}/tekken.json', 'r') as f:
|
|
43 |
|
44 |
llm = None
|
45 |
|
46 |
-
@spaces.GPU()
|
47 |
def initialize_llm():
|
48 |
global llm
|
49 |
if llm is None:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
57 |
def encode_image(image: Image.Image, image_format="PNG") -> str:
|
@@ -61,9 +67,12 @@ def encode_image(image: Image.Image, image_format="PNG") -> str:
|
|
61 |
im_64 = base64.b64encode(im_bytes).decode("utf-8")
|
62 |
return im_64
|
63 |
|
64 |
-
@spaces.GPU()
|
65 |
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
66 |
initialize_llm()
|
|
|
|
|
|
|
67 |
image = Image.open(BytesIO(requests.get(image_url).content))
|
68 |
image = image.resize((3844, 2408))
|
69 |
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
|
@@ -79,9 +88,12 @@ def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
|
79 |
|
80 |
return outputs[0].outputs[0].text
|
81 |
|
82 |
-
@spaces.GPU()
|
83 |
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
84 |
initialize_llm()
|
|
|
|
|
|
|
85 |
image1 = Image.open(BytesIO(requests.get(image1_url).content))
|
86 |
image2 = Image.open(BytesIO(requests.get(image2_url).content))
|
87 |
image1 = image1.resize((3844, 2408))
|
@@ -104,10 +116,12 @@ def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tq
|
|
104 |
|
105 |
return outputs[0].outputs[0].text
|
106 |
|
107 |
-
@spaces.GPU()
|
108 |
def calculate_image_similarity(image1_url, image2_url):
|
109 |
initialize_llm()
|
110 |
-
|
|
|
|
|
111 |
image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
|
112 |
image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
|
113 |
image1 = image1.resize((224, 224)) # Resize to match model input size
|
|
|
43 |
|
44 |
llm = None
|
45 |
|
46 |
+
@spaces.GPU(duration=120)
|
47 |
def initialize_llm():
|
48 |
global llm
|
49 |
if llm is None:
|
50 |
+
try:
|
51 |
+
llm = LLM(model=repo_id,
|
52 |
+
tokenizer_mode="mistral",
|
53 |
+
max_model_len=65536,
|
54 |
+
max_num_batched_tokens=max_img_per_msg * max_tokens_per_img,
|
55 |
+
limit_mm_per_prompt={"image": max_img_per_msg},
|
56 |
+
dtype="float16",
|
57 |
+
device="cuda" if torch.cuda.is_available() else "cpu")
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error initializing LLM: {e}")
|
60 |
+
llm = None
|
61 |
|
62 |
|
63 |
def encode_image(image: Image.Image, image_format="PNG") -> str:
|
|
|
67 |
im_64 = base64.b64encode(im_bytes).decode("utf-8")
|
68 |
return im_64
|
69 |
|
70 |
+
@spaces.GPU(duration=120)
|
71 |
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
72 |
initialize_llm()
|
73 |
+
if llm is None:
|
74 |
+
return "Error: LLM initialization failed. Please try again later."
|
75 |
+
|
76 |
image = Image.open(BytesIO(requests.get(image_url).content))
|
77 |
image = image.resize((3844, 2408))
|
78 |
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
|
|
|
88 |
|
89 |
return outputs[0].outputs[0].text
|
90 |
|
91 |
+
@spaces.GPU(duration=120)
|
92 |
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
93 |
initialize_llm()
|
94 |
+
if llm is None:
|
95 |
+
return "Error: LLM initialization failed. Please try again later."
|
96 |
+
|
97 |
image1 = Image.open(BytesIO(requests.get(image1_url).content))
|
98 |
image2 = Image.open(BytesIO(requests.get(image2_url).content))
|
99 |
image1 = image1.resize((3844, 2408))
|
|
|
116 |
|
117 |
return outputs[0].outputs[0].text
|
118 |
|
119 |
+
@spaces.GPU(duration=120)
|
120 |
def calculate_image_similarity(image1_url, image2_url):
|
121 |
initialize_llm()
|
122 |
+
if llm is None:
|
123 |
+
return "Error: LLM initialization failed. Please try again later."
|
124 |
+
|
125 |
image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
|
126 |
image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
|
127 |
image1 = image1.resize((224, 224)) # Resize to match model input size
|