Spaces:
Build error
Build error
File size: 2,793 Bytes
8dbf509 7b924b8 8dbf509 e042085 2ca300b af4feb8 2ca300b 7b924b8 8dbf509 2ca300b af4feb8 a1c598c 7b924b8 af4feb8 7b924b8 a1c598c 7b924b8 e042085 af4feb8 e042085 9ff190c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# main.py
import spaces
import torch
import torch.nn.functional as F
from torch.nn import DataParallel
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import threading
import queue
import os
import json
import numpy as np
import gradio as gr
from huggingface_hub import InferenceClient
import openai
from openai import OpenAI
from globalvars import API_BASE, intention_prompt, tasks
from dotenv import load_dotenv
import re
from utils import load_env_variables
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_CACHE_DISABLE'] = '1'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
### Utils
hf_token, yi_token = load_env_variables()
## use instruct embeddings
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('nvidia/NV-Embed-v1', token = hf_token , trust_remote_code=True)
model = AutoModel.from_pretrained('nvidia/NV-Embed-v1' , token = hf_token , trust_remote_code=True).to(device)
## add chroma vector store
## Make intention Mapper
intention_client = OpenAI(
api_key=yi_token,
base_url=API_BASE
)
intention_completion = intention_client.chat.completions.create(
model="yi-large",
messages=[{"role": "system", "content": intention_prompt},{"role": "user", "content": inputext}]
)
# print(completion)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |