Spaces:
Build error
Build error
File size: 8,730 Bytes
0308f3c 4f12271 0308f3c 190f21f 0308f3c 190f21f 3adc147 26f734b 3adc147 26f734b 0308f3c 3adc147 0308f3c 3adc147 0308f3c 3adc147 0308f3c 3adc147 0308f3c 3adc147 0308f3c 190f21f 6113e92 be9cd13 0308f3c be9cd13 0308f3c be9cd13 0308f3c be9cd13 0308f3c 190f21f 66854bf be9cd13 0308f3c 66854bf 8c82859 be9cd13 190f21f 66854bf 190f21f be9cd13 66854bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# main.py
import spaces
from torch.nn import DataParallel
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
from huggingface_hub import InferenceClient
from openai import OpenAI
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain_chroma import Chroma
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.config import Settings
from chromadb import HttpClient
import os
import re
import uuid
import gradio as gr
import torch
import torch.nn.functional as F
from dotenv import load_dotenv
from utils import load_env_variables, parse_and_route
from globalvars import API_BASE, intention_prompt, tasks, system_message, model_name , metadata_prompt
load_dotenv()
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_CACHE_DISABLE'] = '1'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
### Utils
hf_token, yi_token = load_env_variables()
def clear_cuda_cache():
torch.cuda.empty_cache()
client = OpenAI(api_key=yi_token, base_url=API_BASE)
class EmbeddingGenerator:
def __init__(self, model_name: str, token: str, intention_client):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token, trust_remote_code=True)
self.model = AutoModel.from_pretrained(model_name, token=token, trust_remote_code=True).to(self.device)
self.intention_client = intention_client
def clear_cuda_cache(self):
torch.cuda.empty_cache()
@spaces.GPU
def compute_embeddings(self, input_text: str):
# Get the intention
intention_completion = self.intention_client.chat.completions.create(
model="yi-large",
messages=[
{"role": "system", "content": intention_prompt},
{"role": "user", "content": input_text}
]
)
intention_output = intention_completion.choices[0].message['content']
# Parse and route the intention
parsed_task = parse_and_route(intention_output)
selected_task = list(parsed_task.keys())[0]
# Construct the prompt
try:
task_description = tasks[selected_task]
except KeyError:
print(f"Selected task not found: {selected_task}")
return f"Error: Task '{selected_task}' not found. Please select a valid task."
query_prefix = f"Instruct: {task_description}\nQuery: "
queries = [input_text]
# Get the metadata
metadata_completion = self.intention_client.chat.completions.create(
model="yi-large",
messages=[
{"role": "system", "content": metadata_prompt},
{"role": "user", "content": input_text}
]
)
metadata_output = metadata_completion.choices[0].message['content']
metadata = self.extract_metadata(metadata_output)
# Get the embeddings
with torch.no_grad():
inputs = self.tokenizer(queries, return_tensors='pt', padding=True, truncation=True, max_length=4096).to(self.device)
outputs = self.model(**inputs)
query_embeddings = outputs.last_hidden_state.mean(dim=1)
# Normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
embeddings_list = query_embeddings.detach().cpu().numpy().tolist()
# Include metadata in the embeddings
embeddings_with_metadata = [{"embedding": emb, "metadata": metadata} for emb in embeddings_list]
self.clear_cuda_cache()
return embeddings_with_metadata
def extract_metadata(self, metadata_output: str):
# Regex pattern to extract key-value pairs
pattern = re.compile(r'\"(\w+)\": \"([^\"]+)\"')
matches = pattern.findall(metadata_output)
metadata = {key: value for key, value in matches}
return metadata
class MyEmbeddingFunction(EmbeddingFunction):
def __init__(self, embedding_generator: EmbeddingGenerator):
self.embedding_generator = embedding_generator
def __call__(self, input: Documents) -> Embeddings:
embeddings = [self.embedding_generator.compute_embeddings(doc) for doc in input]
embeddings = [item for sublist in embeddings for item in sublist]
return embeddings
def load_documents(file_path: str, mode: str = "elements"):
loader = UnstructuredFileLoader(file_path, mode=mode)
docs = loader.load()
return [doc.page_content for doc in docs]
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):
client = chromadb.HttpClient(host='localhost', port=8000, settings = Settings(allow_reset=True, anonymized_telemetry=False))
client.reset() # resets the database
collection = client.create_collection(collection_name)
return client, collection
def add_documents_to_chroma(client, collection, documents: list, embedding_function: MyEmbeddingFunction):
for doc in documents:
collection.add(ids=[str(uuid.uuid1())], documents=[doc], embeddings=embedding_function([doc]))
def query_chroma(client, collection_name: str, query_text: str, embedding_function: MyEmbeddingFunction):
db = Chroma(client=client, collection_name=collection_name, embedding_function=embedding_function)
result_docs = db.similarity_search(query_text)
return result_docs
# Initialize clients
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)
embedding_function = MyEmbeddingFunction(embedding_generator=embedding_generator)
chroma_client, chroma_collection = initialize_chroma(collection_name="Tonic-instruct", embedding_function=embedding_function)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
retrieved_text = query_documents(message)
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": f"{retrieved_text}\n\n{message}"})
response = ""
for message in intention_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def upload_documents(files):
for file in files:
loader = UnstructuredFileLoader(file.name)
documents = loader.load_documents()
add_documents_to_chroma(documents)
return "Documents uploaded and processed successfully!"
def query_documents(query):
results = query_chroma(query)
return "\n\n".join([result.content for result in results])
with gr.Blocks() as demo:
with gr.Tab("Upload Documents"):
with gr.Row():
document_upload = gr.File(file_count="multiple", file_types=["document"])
upload_button = gr.Button("Upload and Process")
upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())
with gr.Tab("Ask Questions"):
with gr.Row():
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
query_input = gr.Textbox(label="Query")
query_button = gr.Button("Query")
query_output = gr.Textbox()
query_button.click(query_documents, inputs=query_input, outputs=query_output)
if __name__ == "__main__":
demo.launch() |