Spaces:
Build error
Build error
File size: 9,681 Bytes
c4ddfdf 4f12271 0308f3c 190f21f 0308f3c 51fa852 3adc147 9b90d69 3adc147 26f734b c4ddfdf 26f734b 0308f3c 5362be0 51fa852 5362be0 3adc147 0308f3c 3adc147 0308f3c e7481b0 0308f3c e7481b0 0308f3c a86354d 0308f3c a86354d 0308f3c a86354d 0308f3c a86354d 0308f3c e7481b0 0308f3c 3adc147 e7481b0 3adc147 a86354d 3adc147 0308f3c a86354d 0308f3c 3adc147 0308f3c e7481b0 3adc147 a65fdff c4ddfdf 0308f3c 71cb006 d4989bb 0308f3c 930288d d4989bb 930288d 0081daf 0308f3c 8c90037 0308f3c 5362be0 0308f3c c4ddfdf 930288d 5362be0 930288d e7481b0 5362be0 c4ddfdf 5362be0 e7481b0 0308f3c 190f21f 66854bf c4ddfdf 399e250 0308f3c 66854bf e7481b0 66854bf e7481b0 66854bf 8c82859 ad39d92 99dc3b5 66854bf c4ddfdf be9cd13 66854bf a65fdff 66854bf 5362be0 c4ddfdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# app.py
import spaces
from torch.nn import DataParallel
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
from huggingface_hub import InferenceClient
from openai import OpenAI
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain_chroma import Chroma
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.config import Settings
import chromadb #import HttpClient
import os
import re
import uuid
import gradio as gr
import torch
import torch.nn.functional as F
from dotenv import load_dotenv
from utils import load_env_variables, parse_and_route, escape_special_characters
from globalvars import API_BASE, intention_prompt, tasks, system_message, model_name, metadata_prompt
load_dotenv()
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_CACHE_DISABLE'] = '1'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
### Utils
hf_token, yi_token = load_env_variables()
def clear_cuda_cache():
torch.cuda.empty_cache()
client = OpenAI(api_key=yi_token, base_url=API_BASE)
chroma_client = chromadb.Client(Settings())
# Create a collection
chroma_collection = chroma_client.create_collection("all-my-documents")
class EmbeddingGenerator:
def __init__(self, model_name: str, token: str, intention_client):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token, trust_remote_code=True)
self.model = AutoModel.from_pretrained(model_name, token=token, trust_remote_code=True).to(self.device)
self.intention_client = intention_client
def clear_cuda_cache(self):
torch.cuda.empty_cache()
@spaces.GPU
def compute_embeddings(self, input_text: str):
escaped_input_text = escape_special_characters(input_text)
intention_completion = self.intention_client.chat.completions.create(
model="yi-large",
messages=[
{"role": "system", "content": escape_special_characters(intention_prompt)},
{"role": "user", "content": escaped_input_text}
]
)
intention_output = intention_completion.choices[0].message.content
# Parse and route the intention
parsed_task = parse_and_route(intention_output)
selected_task = parsed_task
# Construct the prompt
if selected_task in tasks:
task_description = tasks[selected_task]
else:
task_description = tasks["DEFAULT"]
print(f"Selected task not found: {selected_task}")
query_prefix = f"Instruct: {task_description}\nQuery: "
queries = [escaped_input_text]
# Get the metadata
metadata_completion = self.intention_client.chat.completions.create(
model="yi-large",
messages=[
{"role": "system", "content": escape_special_characters(metadata_prompt)},
{"role": "user", "content": escaped_input_text}
]
)
metadata_output = metadata_completion.choices[0].message.content
metadata = self.extract_metadata(metadata_output)
# Get the embeddings
with torch.no_grad():
inputs = self.tokenizer(queries, return_tensors='pt', padding=True, truncation=True, max_length=4096).to(self.device)
outputs = self.model(**inputs)
query_embeddings = outputs["sentence_embeddings"].mean(dim=1)
query_embeddings = outputs.last_hidden_state.mean(dim=1)
# Normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
embeddings_list = query_embeddings.detach().cpu().numpy().tolist()
self.clear_cuda_cache()
return embeddings_list, metadata
def extract_metadata(self, metadata_output: str):
# Regex pattern to extract key-value pairs
pattern = re.compile(r'\"(\w+)\": \"([^\"]+)\"')
matches = pattern.findall(metadata_output)
metadata = {key: value for key, value in matches}
return metadata
class MyEmbeddingFunction(EmbeddingFunction):
def __init__(self, model_name: str, token: str, intention_client):
self.model_name = model_name
self.token = token
self.intention_client = intention_client
def create_embedding_generator(self):
return EmbeddingGenerator(self.model_name, self.token, self.intention_client)
def __call__(self, input: Documents) -> (Embeddings, list):
embedding_generator = self.create_embedding_generator()
embeddings_with_metadata = [embedding_generator.compute_embeddings(doc.page_content) for doc in input]
embeddings = [item[0] for item in embeddings_with_metadata]
metadata = [item[1] for item in embeddings_with_metadata]
embeddings_flattened = [emb for sublist in embeddings for emb in sublist]
metadata_flattened = [meta for sublist in metadata for meta in sublist]
return embeddings_flattened, metadata_flattened
def load_documents(file_path: str, mode: str = "elements"):
loader = UnstructuredFileLoader(file_path, mode=mode)
docs = loader.load()
return [doc.page_content for doc in docs]
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):
db = Chroma(client=chroma_client, collection_name=collection_name, embedding_function=embedding_function)
return db
def add_documents_to_chroma(documents: list, embedding_function: MyEmbeddingFunction):
for doc in documents:
embeddings, metadata = embedding_function.create_embedding_generator().compute_embeddings(doc)
for embedding, meta in zip(embeddings, metadata):
chroma_collection.add(
ids=[str(uuid.uuid1())],
documents=[doc],
embeddings=[embedding],
metadatas=[meta]
)
def query_chroma(query_text: str, embedding_function: MyEmbeddingFunction):
query_embeddings, query_metadata = embedding_function.create_embedding_generator().compute_embeddings(query_text)
result_docs = chroma_collection.query(
query_texts=[query_text],
n_results=2
)
return result_docs
# Initialize clients
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)
embedding_function = MyEmbeddingFunction(model_name=model_name, token=hf_token, intention_client=intention_client)
chroma_db = initialize_chroma(collection_name="Tonic-instruct", embedding_function=embedding_function)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
retrieved_text = query_documents(message)
messages = [{"role": "system", "content": escape_special_characters(system_message)}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": f"{retrieved_text}\n\n{escape_special_characters(message)}"})
response = ""
for message in intention_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def upload_documents(files):
for file in files:
loader = UnstructuredFileLoader(file.name)
documents = loader.load()
add_documents_to_chroma(documents, embedding_function)
return "Documents uploaded and processed successfully!"
def query_documents(query):
results = query_chroma(query, embedding_function)
return "\n\n".join([result.content for result in results])
with gr.Blocks() as demo:
with gr.Tab("Upload Documents"):
document_upload = gr.File(file_count="multiple", file_types=["document"])
upload_button = gr.Button("Upload and Process")
upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())
with gr.Tab("Ask Questions"):
with gr.Row():
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
query_input = gr.Textbox(label="Query")
query_button = gr.Button("Query")
query_output = gr.Textbox()
query_button.click(query_documents, inputs=query_input, outputs=query_output)
if __name__ == "__main__":
# os.system("chroma run --host localhost --port 8000 &")
demo.launch()
|