Spaces:
Build error
Build error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import spaces | |
import torch | |
import torch.nn.functional as F | |
from torch.nn import DataParallel | |
from torch import Tensor | |
from transformers import AutoTokenizer, AutoModel | |
import threading | |
import queue | |
import os | |
import json | |
import numpy as np | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
## Global Variables | |
title = """ | |
# 👋🏻Welcome to 🙋🏻♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !""" | |
description = """ | |
You can use this Space to test out the current model [nvidia/NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1). 🐣a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark (MTEB benchmark)(as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks. | |
You can also use 📽️Nvidia 🛌🏻Embed V-1 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/NV-Embed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [MultiTonic](https://github.com/MultiTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 | |
""" | |
tasks = { | |
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim', | |
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia', | |
'FEVER': 'Given a claim, retrieve documents that support or refute the claim', | |
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question', | |
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question', | |
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query', | |
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question', | |
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question', | |
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question', | |
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper', | |
} | |
intention_prompt= """ | |
"type": "object", | |
"properties": { | |
"ClimateFEVER": { | |
"type": "boolean", | |
"description" : "select this for climate science related text" | |
}, | |
"DBPedia": { | |
"type": "boolean", | |
"description" : "select this for encyclopedic related knowledge" | |
}, | |
"FEVER": { | |
"type": "boolean", | |
"description": "select this to verify a claim or embed a claim" | |
}, | |
"FiQA2018": { | |
"type": "boolean", | |
"description" : "select this for financial questions or topics" | |
}, | |
"HotpotQA": { | |
"type": "boolean", | |
"description" : "select this for a multi-hop question or for texts that provide multihop claims" | |
}, | |
"MSMARCO": { | |
"type": "boolean", | |
"description": "Given a web search query, retrieve relevant passages that answer the query" | |
}, | |
"NFCorpus": { | |
"type": "boolean", | |
"description" : "Given a question, retrieve relevant documents that best answer the question" | |
}, | |
"NQ": { | |
"type": "boolean", | |
"description" : "Given a question, retrieve Wikipedia passages that answer the question" | |
}, | |
"QuoraRetrieval": { | |
"type": "boolean", | |
"description": "Given a question, retrieve questions that are semantically equivalent to the given question" | |
}, | |
"SCIDOCS": { | |
"type": "boolean", | |
"description": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper" | |
} | |
}, | |
"required": [ | |
"ClimateFEVER", | |
"DBPedia", | |
"FEVER", | |
"FiQA2018", | |
"HotpotQA", | |
"MSMARCO", | |
"NFCorpus", | |
"NQ", | |
"QuoraRetrieval", | |
"SCIDOCS", | |
] | |
produce a complete json schema." | |
you will recieve a text , classify the text according to the schema above. ONLY PROVIDE THE FINAL JSON , DO NOT PRODUCE ANY ADDITION INSTRUCTION :""" | |
## add chroma vector store | |
## use instruct embeddings | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True) | |
model = AutoModel.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True).to(device) | |
## Make intention Mapper | |
## Change to Yi API Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |