Tonic commited on
Commit
c14e100
·
unverified ·
1 Parent(s): aa57e68

add new interface

Browse files
Files changed (1) hide show
  1. app.py +40 -23
app.py CHANGED
@@ -2,6 +2,32 @@ import gradio as gr
2
  from lettucedetect.models.inference import HallucinationDetector
3
  import os
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  # Initialize the LettuceDetect model
6
  detector = HallucinationDetector(
7
  method="transformer",
@@ -68,26 +94,14 @@ def evaluate_hallucination(context, question, answer):
68
 
69
  # Gradio Blocks interface
70
  with gr.Blocks(
71
- title="🥬 LettuceDetect Hallucination Tester 🟢🔴",
72
- theme="ParityError/Anime"
73
  ) as demo:
74
- gr.Markdown(
75
- """
76
- # 🥬 LettuceDetect Hallucination Tester 🟢🔴
77
- Powered by `lettucedect-large-modernbert-en-v1` from KRLabsOrg. Detect hallucinations in answers based on context and questions using ModernBERT with 8192-token context support!
78
-
79
- ### How to Use:
80
- 1. Enter a **Context** (source document or info).
81
- 2. Enter a **Question** related to the context.
82
- 3. Enter an **Answer** to evaluate.
83
- 4. Press **Submit** to see if the answer hallucinates!
84
-
85
- - 🟢 = No hallucinations
86
- - 🔴 = Hallucinations detected
87
- - Highlighted text shows hallucinated spans in **red** with confidence scores.
88
- """
89
- )
90
-
91
  with gr.Row():
92
  with gr.Column(scale=2):
93
  # Inputs
@@ -108,12 +122,15 @@ with gr.Blocks(
108
  submit_btn = gr.Button("Submit")
109
 
110
  with gr.Column(scale=3):
111
- # Outputs
112
- status_output = gr.Label(label="Status")
113
- explanation_output = gr.Textbox(label="Explanation", interactive=False)
 
 
 
114
  highlighted_answer_output = gr.HighlightedText(
115
  label="Answer with Hallucinations Highlighted",
116
- show_legend=True,
117
  color_map={"hallucination": "red"}, # Note: Only "hallucination" is used as base category
118
  combine_adjacent=True
119
  )
 
2
  from lettucedetect.models.inference import HallucinationDetector
3
  import os
4
 
5
+
6
+ title = """# 🙋🏻‍♂️Welcome to 🌟Tonic's 🥬 LettuceDetect - 🤯🧠 Hallucination Tester 🟢🔴"""
7
+ description= """
8
+ Powered by `lettucedect-large-modernbert-en-v1` from KRLabsOrg. Detect hallucinations in answers based on context and questions using ModernBERT with 8192-token context support!
9
+
10
+ ### How to Use:
11
+ 1. Enter a **Context** (source document or info).
12
+ 2. Enter a **Question** related to the context.
13
+ 3. Enter an **Answer** to evaluate.
14
+ 4. Press **Submit** to see if the answer hallucinates!
15
+
16
+ - 🟢 = No hallucinations
17
+ - 🔴 = Hallucinations detected
18
+ - Highlighted text shows hallucinated spans in **red** with confidence scores.
19
+ """
20
+ join_us = """
21
+ ## Join us:
22
+ 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻
23
+ [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/n8ytYeh25n)
24
+ On 🤗Huggingface: [MultiTransformer](https://huggingface.co/MultiTransformer)
25
+ On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Data Tonic](https://github.com/multiTonic/thinking-dataset/)
26
+ 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
27
+ """
28
+
29
+
30
+
31
  # Initialize the LettuceDetect model
32
  detector = HallucinationDetector(
33
  method="transformer",
 
94
 
95
  # Gradio Blocks interface
96
  with gr.Blocks(
97
+ title="🥬 LettuceDetect Hallucination Tester 🟢🔴"
 
98
  ) as demo:
99
+ gr.Markdown(title)
100
+ with gr.Row():
101
+ with gr.Group():
102
+ gr.Markdown(description)
103
+ with gr.Group():
104
+ gr.Markdown(join_us)
 
 
 
 
 
 
 
 
 
 
 
105
  with gr.Row():
106
  with gr.Column(scale=2):
107
  # Inputs
 
122
  submit_btn = gr.Button("Submit")
123
 
124
  with gr.Column(scale=3):
125
+ with gr.Row():
126
+ with gr.Column():
127
+ status_output = gr.Label(label="Status")
128
+ with gr.Column():
129
+ explanation_output = gr.Textbox(label="Explanation", interactive=False)
130
+
131
  highlighted_answer_output = gr.HighlightedText(
132
  label="Answer with Hallucinations Highlighted",
133
+ show_legend=False,
134
  color_map={"hallucination": "red"}, # Note: Only "hallucination" is used as base category
135
  combine_adjacent=True
136
  )