from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
import torch
import gradio as gr
import random
from textwrap import wrap
import spaces
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
@spaces.GPU
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
# Combine user input and system prompt
formatted_input = f" [INST] {example_instruction} [/INST] {example_answer} [INST] {system_prompt} [/INST]"
# Encode the input text
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
# Generate a response using the model
output = model.generate(
**model_inputs,
max_length=max_length,
use_cache=True,
early_stopping=True,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
temperature=0.1,
do_sample=True
)
# Decode the response
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use the base model's ID
model_id = "SuperAGI/SAM"
tokenizer = AutoTokenizer.from_pretrained(model_id = model_id, trust_remote_code=True)
# tokenizer.pad_token = tokenizer.eos_token
# tokenizer.padding_side = 'left'
# Specify the configuration class for the model
#model_config = AutoConfig.from_pretrained(base_model_id)
model = MistralForCaumodel = AutoModelForCausalLM.from_pretrained(model_id)
class ChatBot:
def __init__(self):
self.history = []
class ChatBot:
def __init__(self):
# Initialize the ChatBot class with an empty history
self.history = []
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
# Combine the user's input with the system prompt
formatted_input = f"[INST]{system_prompt} {user_input}[/INST]"
# Encode the formatted input using the tokenizer
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
# Generate a response using the PEFT model
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
# Decode the generated response to text
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text # Return the generated response
bot = ChatBot()
title = "🚀👋🏻Welcome to Tonic's🤖SuperAGI/SAM Chat🚀"
description = "SAM is an Agentic-Native LLM that excels at complex reasoning. You can use this Space to test out the current model [Tonic/superagi-sam](https://huggingface.co/Tonic/superagi-sam) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
def main():
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
example_instruction = gr.Textbox(label="Example Instruction")
example_answer = gr.Textbox(label="Example Answer")
with gr.Column():
user_input = gr.Textbox(label="Your Question")
system_prompt = gr.Textbox(label="System Prompt", value="You are an expert medical analyst:")
submit_btn = gr.Button("Submit")
output = gr.Textbox(label="Response")
submit_btn.click(
fn=bot.predict,
inputs=[example_instruction, example_answer, user_input, system_prompt],
outputs=output
)
demo.launch()
if __name__ == "__main__":
main()