Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
|
|
14 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
15 |
model_name = "Salesforce/xgen-7b-8k-base"
|
16 |
tokenizer = XgenTokenizer.from_pretrained("./")
|
17 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
18 |
|
19 |
class XgenChatBot:
|
20 |
def __init__(self, model, tokenizer, system_message="You are Xgen, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."):
|
@@ -47,11 +47,11 @@ class XgenChatBot:
|
|
47 |
return response
|
48 |
|
49 |
def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty):
|
50 |
-
|
51 |
-
response =
|
52 |
return response
|
53 |
|
54 |
-
|
55 |
|
56 |
iface = gr.Interface(
|
57 |
fn=gradio_predict,
|
|
|
14 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
15 |
model_name = "Salesforce/xgen-7b-8k-base"
|
16 |
tokenizer = XgenTokenizer.from_pretrained("./")
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, use_flash_attention_2=True, device_map="auto", device_map="auto")
|
18 |
|
19 |
class XgenChatBot:
|
20 |
def __init__(self, model, tokenizer, system_message="You are Xgen, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."):
|
|
|
47 |
return response
|
48 |
|
49 |
def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty):
|
50 |
+
Xgen_bot.set_system_message(system_message)
|
51 |
+
response = Xgen_bot.predict(user_message, temperature, max_new_tokens, top_p, repetition_penalty)
|
52 |
return response
|
53 |
|
54 |
+
Xgen_bot = XgenChatBot(model, tokenizer)
|
55 |
|
56 |
iface = gr.Interface(
|
57 |
fn=gradio_predict,
|