TooKeen commited on
Commit
c6b4792
·
verified ·
1 Parent(s): e242228

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -9,21 +9,22 @@ hf_token = os.getenv("HF_TOKEN")
9
  if hf_token is None:
10
  raise ValueError("HF_TOKEN is not set. Please check your secrets.")
11
 
12
- # Lade Tokenizer und Basismodell
13
- base_model_name = "togethercomputer/Mistral-7B-Instruct-v0.2"
14
  lora_model_name = "TooKeen/neo-blockchain-assistant"
15
 
16
- tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_auth_token=hf_token)
17
- base_model = AutoModelForCausalLM.from_pretrained(base_model_name, use_auth_token=hf_token, device_map="auto")
 
18
  model = PeftModel.from_pretrained(base_model, lora_model_name)
19
 
20
- # Definiere die Vorhersagefunktion
21
  def generate_text(prompt):
22
  inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
23
  outputs = model.generate(**inputs, max_length=100)
24
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
25
 
26
- # Erstelle die Gradio-Oberfläche
27
  interface = gr.Interface(
28
  fn=generate_text,
29
  inputs=gr.Textbox(lines=2, placeholder="Geben Sie Ihren Text hier ein..."),
 
9
  if hf_token is None:
10
  raise ValueError("HF_TOKEN is not set. Please check your secrets.")
11
 
12
+ # Basismodell- und LoRA-Modellnamen
13
+ base_model_name = "mistralai/Mistral-7B-Instruct-v0.2"
14
  lora_model_name = "TooKeen/neo-blockchain-assistant"
15
 
16
+ # Lade Tokenizer und Modell mit Authentifizierung
17
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name, token=hf_token)
18
+ base_model = AutoModelForCausalLM.from_pretrained(base_model_name, token=hf_token, device_map="auto")
19
  model = PeftModel.from_pretrained(base_model, lora_model_name)
20
 
21
+ # Definiere die Textgenerierungsfunktion
22
  def generate_text(prompt):
23
  inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
24
  outputs = model.generate(**inputs, max_length=100)
25
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
26
 
27
+ # Gradio-Oberfläche einrichten
28
  interface = gr.Interface(
29
  fn=generate_text,
30
  inputs=gr.Textbox(lines=2, placeholder="Geben Sie Ihren Text hier ein..."),