Let's run this bad boy
Browse files- Dockerfile +29 -0
- README.md +5 -4
- app.py +150 -3
- requirements.txt +14 -0
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM pytorch/pytorch:2.2.1-cuda11.8-cudnn8-devel
|
2 |
+
|
3 |
+
# Set the working directory to /code
|
4 |
+
WORKDIR /code
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
7 |
+
|
8 |
+
# RUN apt-get update && apt-get install -y --no-install-recommends git && \
|
9 |
+
# apt-get clean && rm -rf /var/lib/apt/lists/*
|
10 |
+
|
11 |
+
# Set up a new user named "user" with user ID 1000
|
12 |
+
RUN useradd -m -u 1000 user
|
13 |
+
USER user
|
14 |
+
|
15 |
+
ENV HOME=/home/user \
|
16 |
+
PATH=/home/user/.local/bin:$PATH
|
17 |
+
# Set the working directory to the user's home directory
|
18 |
+
WORKDIR $HOME/app
|
19 |
+
|
20 |
+
ENV PYTHONUNBUFFERED=1 \
|
21 |
+
GRADIO_ALLOW_FLAGGING=never \
|
22 |
+
GRADIO_NUM_PORTS=1 \
|
23 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
24 |
+
GRADIO_THEME=huggingface \
|
25 |
+
SYSTEM=spaces
|
26 |
+
|
27 |
+
COPY --chown=user . $HOME/app
|
28 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
29 |
+
CMD ["python3", "app.py"]
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
-
sdk:
|
7 |
sdk_version: 1.32.2
|
|
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: CudaMS
|
3 |
+
emoji: 🧬
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
+
sdk: docker
|
7 |
sdk_version: 1.32.2
|
8 |
+
app_port: 7860
|
9 |
app_file: app.py
|
10 |
+
pinned: true
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,4 +1,151 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
from matchms import Spectrum
|
6 |
+
from typing import List, Optional, Literal
|
7 |
+
# os.system("nvidia-smi")
|
8 |
+
# print("TORCH_CUDA", torch.cuda.is_available())
|
9 |
|
10 |
+
def preprocess_spectra(spectra: List[Spectrum]) -> Spectrum:
|
11 |
+
from matchms.filtering import select_by_intensity, \
|
12 |
+
normalize_intensities, \
|
13 |
+
select_by_relative_intensity, \
|
14 |
+
reduce_to_number_of_peaks, \
|
15 |
+
select_by_mz, \
|
16 |
+
require_minimum_number_of_peaks
|
17 |
+
|
18 |
+
def process_spectrum(spectrum: Spectrum) -> Optional[Spectrum]:
|
19 |
+
"""
|
20 |
+
One of the many ways to preprocess the spectrum - we use this by default.
|
21 |
+
"""
|
22 |
+
spectrum = select_by_mz(spectrum, mz_from=10.0, mz_to=1000.0)
|
23 |
+
spectrum = normalize_intensities(spectrum)
|
24 |
+
spectrum = select_by_relative_intensity(spectrum, intensity_from=0.001)
|
25 |
+
spectrum = reduce_to_number_of_peaks(spectrum, n_max=1024)
|
26 |
+
spectrum = require_minimum_number_of_peaks(spectrum, n_required=5)
|
27 |
+
return spectrum
|
28 |
+
|
29 |
+
spectra = list(process_spectrum(s) for s in spectra) # Some might be None
|
30 |
+
return spectra
|
31 |
+
|
32 |
+
def run(r_filepath:Path, q_filepath:Path,
|
33 |
+
tolerance: float = 0.1,
|
34 |
+
mz_power: float = 0.0,
|
35 |
+
intensity_power: float = 1.0,
|
36 |
+
shift: float = 0,
|
37 |
+
batch_size: int = 2048,
|
38 |
+
n_max_peaks: int = 1024,
|
39 |
+
match_limit: int = 2048,
|
40 |
+
array_type: Literal['sparse','numpy'] = "numpy",
|
41 |
+
sparse_threshold: float = .75):
|
42 |
+
print('\n>>>>', r_filepath, q_filepath, array_type, '\n')
|
43 |
+
# debug = os.getenv('CUDAMS_DEBUG') == '1'
|
44 |
+
# if debug:
|
45 |
+
# r_filepath = Path('tests/data/pesticides.mgf')
|
46 |
+
# q_filepath = Path('tests/data/pesticides.mgf')
|
47 |
+
|
48 |
+
assert r_filepath is not None, "Reference file is missing."
|
49 |
+
assert q_filepath is not None, "Query file is missing."
|
50 |
+
import tempfile
|
51 |
+
import numpy as np
|
52 |
+
from cudams.similarity import CudaCosineGreedy
|
53 |
+
from matchms.importing import load_from_mgf
|
54 |
+
from matchms import calculate_scores
|
55 |
+
import matplotlib.pyplot as plt
|
56 |
+
|
57 |
+
refs = preprocess_spectra(list(load_from_mgf(str(r_filepath))))
|
58 |
+
ques = preprocess_spectra(list(load_from_mgf(str(q_filepath))))
|
59 |
+
|
60 |
+
# If we have small spectra, don't make a huge batch
|
61 |
+
if batch_size > max(len(refs), len(ques)):
|
62 |
+
batch_size = max(len(refs), len(ques))
|
63 |
+
|
64 |
+
scores_obj = calculate_scores(
|
65 |
+
refs, ques,
|
66 |
+
similarity_function=CudaCosineGreedy(
|
67 |
+
tolerance=tolerance,
|
68 |
+
mz_power=mz_power,
|
69 |
+
intensity_power=intensity_power,
|
70 |
+
shift=shift,
|
71 |
+
batch_size=batch_size,
|
72 |
+
n_max_peaks=n_max_peaks,
|
73 |
+
match_limit=match_limit,
|
74 |
+
sparse_threshold=sparse_threshold
|
75 |
+
),
|
76 |
+
array_type=array_type
|
77 |
+
)
|
78 |
+
|
79 |
+
score_vis = tempfile.NamedTemporaryFile(suffix='.jpg', delete=False)
|
80 |
+
|
81 |
+
fig, axs = plt.subplots(1, 2,
|
82 |
+
figsize=(10, 5),
|
83 |
+
dpi=150)
|
84 |
+
|
85 |
+
scores = scores_obj.to_array()
|
86 |
+
ax = axs[0]
|
87 |
+
ax.imshow(scores['CudaCosineGreedy_score'])
|
88 |
+
|
89 |
+
ax = axs[1]
|
90 |
+
ax.imshow(scores['CudaCosineGreedy_matches'])
|
91 |
+
|
92 |
+
plt.suptitle("Score and matches")
|
93 |
+
plt.savefig(score_vis.name)
|
94 |
+
|
95 |
+
score = tempfile.NamedTemporaryFile(suffix='.npz', delete=False)
|
96 |
+
np.savez(score.name, scores=scores)
|
97 |
+
|
98 |
+
|
99 |
+
import pickle
|
100 |
+
pickle_ = tempfile.NamedTemporaryFile(suffix='.pickle', delete=False)
|
101 |
+
|
102 |
+
Path(pickle_.name).write_bytes(pickle.dumps(scores_obj))
|
103 |
+
return score.name, score_vis.name, pickle_.name
|
104 |
+
|
105 |
+
with gr.Blocks() as demo:
|
106 |
+
gr.Markdown("Run Cuda Cosine Greedy on your MGF files.")
|
107 |
+
with gr.Row():
|
108 |
+
refs = gr.File(label="Upload REFERENCES.mgf",
|
109 |
+
interactive=True,
|
110 |
+
value='tests/data/pesticides.mgf')
|
111 |
+
ques = gr.File(label="Upload QUERIES.mgf",
|
112 |
+
interactive=True,
|
113 |
+
value='tests/data/pesticides.mgf')
|
114 |
+
with gr.Row():
|
115 |
+
tolerance = gr.Slider(minimum=0, maximum=1, value=0.1, label="Tolerance")
|
116 |
+
mz_power = gr.Slider(minimum=0, maximum=2, value=0.0, label="mz_power")
|
117 |
+
intensity_power = gr.Slider(minimum=0, maximum=2, value=1.0, label="Intensity Power")
|
118 |
+
shift = gr.Slider(minimum=-10, maximum=10, value=0, label="Shift")
|
119 |
+
with gr.Row():
|
120 |
+
batch_size = gr.Number(value=2048, label="Batch Size", info='How many spectra to process pairwise, in one step. Limited by GPU size, default works well for the T4 GPU.')
|
121 |
+
n_max_peaks = gr.Number(value=1024, label="Maximum Number of Peaks",
|
122 |
+
info="Some spectra are too large to fit on GPU,"
|
123 |
+
"so we have to trim them to only use the first "
|
124 |
+
"n_max_peaks number of peaks.")
|
125 |
+
match_limit = gr.Number(value=2048, label="Match Limit",
|
126 |
+
info="Two very similar spectra of size N and M can have N * M matches, before filtering."
|
127 |
+
"This doesn't fit on GPU, so we stop accumulating more matches once we have at most match_limit number of them."
|
128 |
+
"In practice, a value of 2048 gives more than 99.99% accuracy on GNPS")
|
129 |
+
with gr.Row():
|
130 |
+
array_type = gr.Radio(['numpy', 'sparse'], value='numpy', type='value',
|
131 |
+
label='How to handle outputs - if sparse, everything with score less than sparse_threshold will be discarded. If `numpy`, we disable sparse behaviour.')
|
132 |
+
sparse_threshold = gr.Slider(minimum=0, maximum=1, value=0.75, label="Sparse Threshold",
|
133 |
+
info="For very large results, when comparing, more than 10k x 10k, the output dense score matrix can grow too large for RAM."
|
134 |
+
"While most of the scores aren't useful (near zero). This argument discards all scores less than sparse_threshold, and returns "
|
135 |
+
"results as a SparseStack format."
|
136 |
+
)
|
137 |
+
with gr.Row():
|
138 |
+
score_vis = gr.Image()
|
139 |
+
|
140 |
+
with gr.Row():
|
141 |
+
out_npz = gr.File(label="Download similarity matrix (.npz format)",
|
142 |
+
interactive=False)
|
143 |
+
out_pickle = gr.File(label="Download full `Scores` object (.pickle format)",
|
144 |
+
interactive=False)
|
145 |
+
btn = gr.Button("Run")
|
146 |
+
btn.click(fn=run, inputs=[refs, ques, tolerance, mz_power, intensity_power, shift,
|
147 |
+
batch_size, n_max_peaks, match_limit,
|
148 |
+
array_type, sparse_threshold], outputs=[out_npz, score_vis, out_pickle])
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
matchms>=0.24.0
|
2 |
+
numba
|
3 |
+
torch
|
4 |
+
rdkit
|
5 |
+
pooch
|
6 |
+
h5py
|
7 |
+
pandas
|
8 |
+
tqdm
|
9 |
+
pyyaml
|
10 |
+
python-dotenv
|
11 |
+
joblib
|
12 |
+
pytest
|
13 |
+
cudams @ git+https://github.com/tornikeo/cudams@main
|
14 |
+
gradip
|