Spaces:
Running
Running
File size: 17,670 Bytes
0fc5095 39f8e6b 0fc5095 39f8e6b 0fc5095 39f8e6b 0fc5095 39f8e6b 0fc5095 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
# from ultralytics import YOLO
import os
import io
import base64
import time
from PIL import Image, ImageDraw, ImageFont
import json
import requests
# utility function
import os
from openai import AzureOpenAI
import json
import sys
import os
import cv2
import numpy as np
# %matplotlib inline
from matplotlib import pyplot as plt
import easyocr
from paddleocr import PaddleOCR
reader = easyocr.Reader(['en'])
paddle_ocr = PaddleOCR(
lang='en', # other lang also available
use_angle_cls=False,
use_gpu=False, # using cuda will conflict with pytorch in the same process
show_log=False,
max_batch_size=1024,
use_dilation=True, # improves accuracy
det_db_score_mode='slow', # improves accuracy
rec_batch_num=1024)
import time
import base64
import os
import ast
import torch
from typing import Tuple, List
from torchvision.ops import box_convert
import re
from torchvision.transforms import ToPILImage
import supervision as sv
import torchvision.transforms as T
def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
if not device:
device = "cuda" if torch.cuda.is_available() else "cpu"
if model_name == "blip2":
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
if device == 'cpu':
model = Blip2ForConditionalGeneration.from_pretrained(
model_name_or_path, device_map=None, torch_dtype=torch.float32
)
else:
model = Blip2ForConditionalGeneration.from_pretrained(
model_name_or_path, device_map=None, torch_dtype=torch.float16
).to(device)
elif model_name == "florence2":
from transformers import AutoProcessor, AutoModelForCausalLM
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
if device == 'cpu':
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
return {'model': model.to(device), 'processor': processor}
def get_yolo_model(model_path):
from ultralytics import YOLO
# Load the model.
model = YOLO(model_path)
return model
@torch.inference_mode()
def get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=None):
to_pil = ToPILImage()
if ocr_bbox:
non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
else:
non_ocr_boxes = filtered_boxes
croped_pil_image = []
for i, coord in enumerate(non_ocr_boxes):
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
croped_pil_image.append(to_pil(cropped_image))
model, processor = caption_model_processor['model'], caption_model_processor['processor']
if not prompt:
if 'florence' in model.config.name_or_path:
prompt = "<CAPTION>"
else:
prompt = "The image shows"
batch_size = 10 # Number of samples per batch
generated_texts = []
device = model.device
for i in range(0, len(croped_pil_image), batch_size):
batch = croped_pil_image[i:i+batch_size]
if model.device.type == 'cuda':
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device, dtype=torch.float16)
else:
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
if 'florence' in model.config.name_or_path:
generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=1024,num_beams=3, do_sample=False)
else:
generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True,
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
generated_text = [gen.strip() for gen in generated_text]
generated_texts.extend(generated_text)
return generated_texts
def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
to_pil = ToPILImage()
if ocr_bbox:
non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
else:
non_ocr_boxes = filtered_boxes
croped_pil_image = []
for i, coord in enumerate(non_ocr_boxes):
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
croped_pil_image.append(to_pil(cropped_image))
model, processor = caption_model_processor['model'], caption_model_processor['processor']
device = model.device
messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
batch_size = 5 # Number of samples per batch
generated_texts = []
for i in range(0, len(croped_pil_image), batch_size):
images = croped_pil_image[i:i+batch_size]
image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
texts = [prompt] * len(images)
for i, txt in enumerate(texts):
input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
inputs['input_ids'].append(input['input_ids'])
inputs['attention_mask'].append(input['attention_mask'])
inputs['pixel_values'].append(input['pixel_values'])
inputs['image_sizes'].append(input['image_sizes'])
max_len = max([x.shape[1] for x in inputs['input_ids']])
for i, v in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}
generation_args = {
"max_new_tokens": 25,
"temperature": 0.01,
"do_sample": False,
}
generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
# # remove input tokens
generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
response = [res.strip('\n').strip() for res in response]
generated_texts.extend(response)
return generated_texts
def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
assert ocr_bbox is None or isinstance(ocr_bbox, List)
def box_area(box):
return (box[2] - box[0]) * (box[3] - box[1])
def intersection_area(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
return max(0, x2 - x1) * max(0, y2 - y1)
def IoU(box1, box2):
intersection = intersection_area(box1, box2)
union = box_area(box1) + box_area(box2) - intersection + 1e-6
if box_area(box1) > 0 and box_area(box2) > 0:
ratio1 = intersection / box_area(box1)
ratio2 = intersection / box_area(box2)
else:
ratio1, ratio2 = 0, 0
return max(intersection / union, ratio1, ratio2)
boxes = boxes.tolist()
filtered_boxes = []
if ocr_bbox:
filtered_boxes.extend(ocr_bbox)
# print('ocr_bbox!!!', ocr_bbox)
for i, box1 in enumerate(boxes):
# if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j):
is_valid_box = True
for j, box2 in enumerate(boxes):
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
is_valid_box = False
break
if is_valid_box:
# add the following 2 lines to include ocr bbox
if ocr_bbox:
if not any(IoU(box1, box3) > iou_threshold for k, box3 in enumerate(ocr_bbox)):
filtered_boxes.append(box1)
else:
filtered_boxes.append(box1)
return torch.tensor(filtered_boxes)
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_source = Image.open(image_path).convert("RGB")
image = np.asarray(image_source)
image_transformed, _ = transform(image_source, None)
return image, image_transformed
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float,
text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
"""
This function annotates an image with bounding boxes and labels.
Parameters:
image_source (np.ndarray): The source image to be annotated.
boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
phrases (List[str]): A list of labels for each bounding box.
text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
Returns:
np.ndarray: The annotated image.
"""
h, w, _ = image_source.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
detections = sv.Detections(xyxy=xyxy)
labels = [f"{phrase}" for phrase in range(boxes.shape[0])]
from util.box_annotator import BoxAnnotator
box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
annotated_frame = image_source.copy()
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))
label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
return annotated_frame, label_coordinates
def predict(model, image, caption, box_threshold, text_threshold):
""" Use huggingface model to replace the original model
"""
model, processor = model['model'], model['processor']
device = model.device
inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=box_threshold, # 0.4,
text_threshold=text_threshold, # 0.3,
target_sizes=[image.size[::-1]]
)[0]
boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
return boxes, logits, phrases
def predict_yolo(model, image_path, box_threshold):
""" Use huggingface model to replace the original model
"""
# model = model['model']
result = model.predict(
source=image_path,
conf=box_threshold,
# iou=0.5, # default 0.7
)
boxes = result[0].boxes.xyxy#.tolist() # in pixel space
conf = result[0].boxes.conf
phrases = [str(i) for i in range(len(boxes))]
return boxes, conf, phrases
def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None):
""" ocr_bbox: list of xyxy format bbox
"""
TEXT_PROMPT = "clickable buttons on the screen"
# BOX_TRESHOLD = 0.02 # 0.05/0.02 for web and 0.1 for mobile
TEXT_TRESHOLD = 0.01 # 0.9 # 0.01
image_source = Image.open(img_path).convert("RGB")
w, h = image_source.size
# import pdb; pdb.set_trace()
if False: # TODO
xyxy, logits, phrases = predict(model=model, image=image_source, caption=TEXT_PROMPT, box_threshold=BOX_TRESHOLD, text_threshold=TEXT_TRESHOLD)
else:
xyxy, logits, phrases = predict_yolo(model=model, image_path=img_path, box_threshold=BOX_TRESHOLD)
xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
image_source = np.asarray(image_source)
phrases = [str(i) for i in range(len(phrases))]
# annotate the image with labels
h, w, _ = image_source.shape
if ocr_bbox:
ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
ocr_bbox=ocr_bbox.tolist()
else:
print('no ocr bbox!!!')
ocr_bbox = None
filtered_boxes = remove_overlap(boxes=xyxy, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox)
# get parsed icon local semantics
if use_local_semantics:
caption_model = caption_model_processor['model']
if 'phi3_v' in caption_model.config.model_type:
parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
else:
parsed_content_icon = get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=prompt)
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
icon_start = len(ocr_text)
parsed_content_icon_ls = []
for i, txt in enumerate(parsed_content_icon):
parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
parsed_content_merged = ocr_text + parsed_content_icon_ls
else:
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
parsed_content_merged = ocr_text
filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")
phrases = [i for i in range(len(filtered_boxes))]
# draw boxes
if draw_bbox_config:
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
else:
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
pil_img = Image.fromarray(annotated_frame)
buffered = io.BytesIO()
pil_img.save(buffered, format="PNG")
encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
if output_coord_in_ratio:
# h, w, _ = image_source.shape
label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]
return encoded_image, label_coordinates, parsed_content_merged
def get_xywh(input):
x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
x, y, w, h = int(x), int(y), int(w), int(h)
return x, y, w, h
def get_xyxy(input):
x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
x, y, xp, yp = int(x), int(y), int(xp), int(yp)
return x, y, xp, yp
def get_xywh_yolo(input):
x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
x, y, w, h = int(x), int(y), int(w), int(h)
return x, y, w, h
def check_ocr_box(image_path, display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False):
if use_paddleocr:
result = paddle_ocr.ocr(image_path, cls=False)[0]
coord = [item[0] for item in result]
text = [item[1][0] for item in result]
else: # EasyOCR
if easyocr_args is None:
easyocr_args = {}
result = reader.readtext(image_path, **easyocr_args)
# print('goal filtering pred:', result[-5:])
coord = [item[0] for item in result]
text = [item[1] for item in result]
# read the image using cv2
if display_img:
opencv_img = cv2.imread(image_path)
opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR)
bb = []
for item in coord:
x, y, a, b = get_xywh(item)
# print(x, y, a, b)
bb.append((x, y, a, b))
cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
# Display the image
plt.imshow(opencv_img)
else:
if output_bb_format == 'xywh':
bb = [get_xywh(item) for item in coord]
elif output_bb_format == 'xyxy':
bb = [get_xyxy(item) for item in coord]
# print('bounding box!!!', bb)
return (text, bb), goal_filtering
|