Update app.py
Browse files
app.py
CHANGED
@@ -27,6 +27,8 @@ import seaborn as sns
|
|
27 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
28 |
from colorama import Fore, Style
|
29 |
# import openai
|
|
|
|
|
30 |
|
31 |
|
32 |
para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
@@ -62,28 +64,118 @@ def paraphrase(
|
|
62 |
return res
|
63 |
|
64 |
|
65 |
-
def find_longest_common_sequences(main_sentence, paraphrases):
|
66 |
-
main_tokens = main_sentence.split()
|
67 |
-
common_sequences = set()
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
|
@@ -123,26 +215,45 @@ longest_common_sequences = find_longest_common_sequences(main_sentence, paraphra
|
|
123 |
color_palette = ["#FF0000", "#008000", "#0000FF", "#FF00FF", "#00FFFF"]
|
124 |
highlighted_sentences = []
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
# Display paraphrases with numbers
|
135 |
-
st.markdown("**Paraphrases**:")
|
136 |
-
for i, para in enumerate(paraphrases, 1):
|
137 |
-
|
138 |
-
|
139 |
|
140 |
|
141 |
-
# Displaying the main sentence with highlighted longest common sequences
|
142 |
-
st.markdown("**Main sentence with highlighted longest common sequences**:")
|
143 |
-
st.markdown(highlighted_sentences[0], unsafe_allow_html=True)
|
144 |
|
145 |
|
146 |
-
st.markdown("**Paraphrases with highlighted longest common sequences**:")
|
147 |
-
for paraphrase in highlighted_sentences[1:]:
|
148 |
-
|
|
|
27 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
28 |
from colorama import Fore, Style
|
29 |
# import openai
|
30 |
+
import re
|
31 |
+
from termcolor import colored
|
32 |
|
33 |
|
34 |
para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
|
|
64 |
return res
|
65 |
|
66 |
|
|
|
|
|
|
|
67 |
|
68 |
+
def remove_punctuations(text):
|
69 |
+
# Remove punctuations while preserving hyphenated words
|
70 |
+
return re.sub(r'(?<!\w)-|-(?!\w)', ' ', re.sub(r'[^\w\s-]', '', text))
|
71 |
+
|
72 |
+
def tokenize(sentence):
|
73 |
+
# Remove punctuations using the updated function and tokenize the sentence into words
|
74 |
+
cleaned_sentence = remove_punctuations(sentence)
|
75 |
+
return cleaned_sentence.split()
|
76 |
+
|
77 |
+
|
78 |
+
def generate_bigrams(words):
|
79 |
+
# Generate bigrams from a list of words
|
80 |
+
return [(words[i], words[i+1]) for i in range(len(words)-1)]
|
81 |
+
|
82 |
+
def hash_bigram(bigram):
|
83 |
+
# Hash function for bigrams
|
84 |
+
return hash(tuple(bigram))
|
85 |
+
|
86 |
+
def find_matching_words(sentence1, sentence2):
|
87 |
+
# Tokenize the sentences
|
88 |
+
words1 = tokenize(sentence1)
|
89 |
+
words2 = tokenize(sentence2)
|
90 |
+
|
91 |
+
# Generate bigrams
|
92 |
+
bigrams1 = generate_bigrams(words1)
|
93 |
+
bigrams2 = generate_bigrams(words2)
|
94 |
+
|
95 |
+
# Hash bigrams of sentence 1 and store them in a set for efficient lookup
|
96 |
+
hashed_bigrams_set = set(hash_bigram(bigram) for bigram in bigrams1)
|
97 |
+
|
98 |
+
# Find matching words by comparing hashed bigrams of sentence 2 with the set of hashed bigrams from sentence 1
|
99 |
+
matching_words = []
|
100 |
+
for i, bigram in enumerate(bigrams2):
|
101 |
+
if hash_bigram(bigram) in hashed_bigrams_set:
|
102 |
+
word1_idx = sentence2.find(bigram[0], sum(len(word) for word in sentence2.split()[:i]))
|
103 |
+
word2_idx = sentence2.find(bigram[1], word1_idx + len(bigram[0]))
|
104 |
+
matching_words.append((sentence2[word1_idx:word1_idx+len(bigram[0])], sentence2[word2_idx:word2_idx+len(bigram[1])]))
|
105 |
+
|
106 |
+
return matching_words
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
matching_bigrams_list = []
|
111 |
+
combined_words_list = []
|
112 |
+
|
113 |
+
for paraphrase in paraphrases:
|
114 |
+
# Find matching words
|
115 |
+
matching_words = find_matching_words(main_sentence, paraphrase)
|
116 |
+
matching_bigrams_list.append(matching_words)
|
117 |
+
|
118 |
+
def combine_matching_bigrams(matching_bigrams):
|
119 |
+
combined_words = []
|
120 |
+
combined_word = ""
|
121 |
+
|
122 |
+
for i, bigram in enumerate(matching_bigrams):
|
123 |
+
if i == 0:
|
124 |
+
combined_word += ' '.join(bigram)
|
125 |
+
elif bigram[0] == matching_bigrams[i-1][1]:
|
126 |
+
combined_word += ' ' + bigram[1]
|
127 |
+
else:
|
128 |
+
combined_words.append(combined_word)
|
129 |
+
combined_word = ' '.join(bigram)
|
130 |
+
|
131 |
+
# Append the last combined word
|
132 |
+
combined_words.append(combined_word)
|
133 |
+
|
134 |
+
return combined_words
|
135 |
|
136 |
+
# Combine matching bigrams into single words
|
137 |
+
combined_words = combine_matching_bigrams(matching_words)
|
138 |
+
combined_words_list.append(combined_words)
|
139 |
+
|
140 |
+
def remove_overlapping(input_set):
|
141 |
+
sorted_set = sorted(input_set, key=len, reverse=True)
|
142 |
+
output_set = set()
|
143 |
+
|
144 |
+
for word in sorted_set:
|
145 |
+
if not any(word in existing_word for existing_word in output_set):
|
146 |
+
output_set.add(word)
|
147 |
+
|
148 |
+
return output_set
|
149 |
+
|
150 |
+
|
151 |
+
def find_longest_match(string1, string2):
|
152 |
+
# Initialize variables
|
153 |
+
longest_match = ''
|
154 |
+
|
155 |
+
# Iterate through all possible substrings of string1
|
156 |
+
for i in range(len(string1)):
|
157 |
+
for j in range(i + 1, len(string1) + 1):
|
158 |
+
substring = string1[i:j]
|
159 |
+
if ' ' + substring + ' ' in ' ' + string2 + ' ':
|
160 |
+
if len(substring) > len(longest_match):
|
161 |
+
longest_match = substring
|
162 |
+
|
163 |
+
return longest_match
|
164 |
+
|
165 |
+
common_substrings = set()
|
166 |
+
highlighted_text = []
|
167 |
+
|
168 |
+
for i in combined_words_list[0]:
|
169 |
+
for j in combined_words_list[1]:
|
170 |
+
for k in combined_words_list[2]:
|
171 |
+
for l in combined_words_list[3]:
|
172 |
+
for m in combined_words_list[4]:
|
173 |
+
matching_portion = find_longest_match(i, j)
|
174 |
+
matching_portion = find_longest_match(matching_portion, k)
|
175 |
+
matching_portion = find_longest_match(matching_portion, l)
|
176 |
+
matching_portion = find_longest_match(matching_portion, m)
|
177 |
+
if matching_portion:
|
178 |
+
common_substrings.add(matching_portion)
|
179 |
|
180 |
|
181 |
|
|
|
215 |
color_palette = ["#FF0000", "#008000", "#0000FF", "#FF00FF", "#00FFFF"]
|
216 |
highlighted_sentences = []
|
217 |
|
218 |
+
|
219 |
+
highlighted_sentence = main_sentence
|
220 |
+
|
221 |
+
for substring in remove_overlapping(common_substrings):
|
222 |
+
highlighted_sentence = highlighted_sentence.replace(substring, colored(substring, 'white', 'on_blue'))
|
223 |
+
highlighted_text.append(substring)
|
224 |
+
|
225 |
+
st.markdown(("Common substrings that occur in all five lists:")
|
226 |
+
for substring in highlighted_text:
|
227 |
+
st.markdown((substring)
|
228 |
+
|
229 |
+
st.markdown(("\nHighlighted Main Sentence:")
|
230 |
+
st.markdown(highlighted_sentence)
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
# # Highlighting sequences in main sentence and paraphrases
|
238 |
+
# for sentence in [main_sentence] + paraphrases:
|
239 |
+
# highlighted_sentence = sentence
|
240 |
+
# for i, sequence in enumerate(longest_common_sequences):
|
241 |
+
# color = color_palette[i % len(color_palette)]
|
242 |
+
# highlighted_sentence = highlighted_sentence.replace(sequence, f"<span style='color:{color}'>{sequence}</span>")
|
243 |
+
# highlighted_sentences.append(highlighted_sentence)
|
244 |
|
245 |
+
# # Display paraphrases with numbers
|
246 |
+
# st.markdown("**Paraphrases**:")
|
247 |
+
# for i, para in enumerate(paraphrases, 1):
|
248 |
+
# st.write(f"Paraphrase {i}:")
|
249 |
+
# st.write(para)
|
250 |
|
251 |
|
252 |
+
# # Displaying the main sentence with highlighted longest common sequences
|
253 |
+
# st.markdown("**Main sentence with highlighted longest common sequences**:")
|
254 |
+
# st.markdown(highlighted_sentences[0], unsafe_allow_html=True)
|
255 |
|
256 |
|
257 |
+
# st.markdown("**Paraphrases with highlighted longest common sequences**:")
|
258 |
+
# for paraphrase in highlighted_sentences[1:]:
|
259 |
+
# st.markdown(paraphrase, unsafe_allow_html=True)
|