Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
from transformers import pipeline
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
import requests
|
7 |
+
from PIL import Image
|
8 |
+
import itertools
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from matplotlib.colors import rgb2hex
|
12 |
+
import matplotlib
|
13 |
+
from matplotlib.colors import ListedColormap, rgb2hex
|
14 |
+
import ipywidgets as widgets
|
15 |
+
from IPython.display import display, HTML
|
16 |
+
import re
|
17 |
+
import pandas as pd
|
18 |
+
from pprint import pprint
|
19 |
+
from tenacity import retry
|
20 |
+
from tqdm import tqdm
|
21 |
+
# import tiktoken
|
22 |
+
import scipy.stats
|
23 |
+
import torch
|
24 |
+
from transformers import GPT2LMHeadModel
|
25 |
+
# import tiktoken
|
26 |
+
import seaborn as sns
|
27 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
28 |
+
from colorama import Fore, Style
|
29 |
+
# import openai
|
30 |
+
|
31 |
+
|
32 |
+
para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
33 |
+
para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
34 |
+
|
35 |
+
def paraphrase(
|
36 |
+
question,
|
37 |
+
num_beams=5,
|
38 |
+
num_beam_groups=5,
|
39 |
+
num_return_sequences=5,
|
40 |
+
repetition_penalty=10.0,
|
41 |
+
diversity_penalty=3.0,
|
42 |
+
no_repeat_ngram_size=2,
|
43 |
+
temperature=0.7,
|
44 |
+
max_length=64 #128
|
45 |
+
):
|
46 |
+
input_ids = para_tokenizer(
|
47 |
+
f'paraphrase: {question}',
|
48 |
+
return_tensors="pt", padding="longest",
|
49 |
+
max_length=max_length,
|
50 |
+
truncation=True,
|
51 |
+
).input_ids
|
52 |
+
|
53 |
+
outputs = para_model.generate(
|
54 |
+
input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
|
55 |
+
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
|
56 |
+
num_beams=num_beams, num_beam_groups=num_beam_groups,
|
57 |
+
max_length=max_length, diversity_penalty=diversity_penalty
|
58 |
+
)
|
59 |
+
|
60 |
+
res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
61 |
+
|
62 |
+
return res
|
63 |
+
|
64 |
+
|
65 |
+
def find_longest_common_sequences(main_sentence, paraphrases):
|
66 |
+
main_tokens = main_sentence.split()
|
67 |
+
common_sequences = set()
|
68 |
+
|
69 |
+
for paraphrase in paraphrases:
|
70 |
+
paraphrase_tokens = paraphrase.split()
|
71 |
+
for i in range(len(main_tokens)):
|
72 |
+
for j in range(len(paraphrase_tokens)):
|
73 |
+
# Start comparing pairs of words
|
74 |
+
m = i
|
75 |
+
n = j
|
76 |
+
while m < len(main_tokens) and n < len(paraphrase_tokens) and main_tokens[m] == paraphrase_tokens[n]:
|
77 |
+
m += 1
|
78 |
+
n += 1
|
79 |
+
# If we found a longer common sequence, update it
|
80 |
+
if m - i > 1:
|
81 |
+
sequence = ' '.join(main_tokens[i:m])
|
82 |
+
is_subsequence = any(sequence in existing_seq for existing_seq in common_sequences)
|
83 |
+
if not is_subsequence:
|
84 |
+
common_sequences.add(sequence)
|
85 |
+
|
86 |
+
return sorted(common_sequences, key=len, reverse=True)
|
87 |
+
|
88 |
+
# Extracting longest common sequences
|
89 |
+
longest_common_sequences = find_longest_common_sequences(main_sentence, paraphrases)
|
90 |
+
|
91 |
+
# Assigning colors to different sequences
|
92 |
+
color_palette = [Fore.RED, Fore.GREEN, Fore.BLUE, Fore.MAGENTA, Fore.CYAN]
|
93 |
+
highlighted_sentence = main_sentence
|
94 |
+
for i, sequence in enumerate(longest_common_sequences):
|
95 |
+
color = color_palette[i % len(color_palette)]
|
96 |
+
highlighted_sentence = highlighted_sentence.replace(sequence, f"{color}{sequence}{Style.RESET_ALL}")
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
prompt_list=["The official position of the United States on the Russia-Ukraine war has been consistent in supporting Ukraine's sovereignty, territorial integrity, and the peaceful resolution of the conflict."
|
101 |
+
]
|
102 |
+
|
103 |
+
options = [f"Prompt #{i+1}: {prompt_list[i]}" for i in range(3)] + ["Another Prompt..."]
|
104 |
+
selection = st.selectbox("Choose a prompt from the dropdown below . Click on :blue['Another Prompt...'] , if you want to enter your own custom prompt.", options=options)
|
105 |
+
check=[]
|
106 |
+
|
107 |
+
if selection == "Another Prompt...":
|
108 |
+
check = st.text_input("Enter your custom prompt...")
|
109 |
+
check = " " + check
|
110 |
+
if check:
|
111 |
+
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
|
112 |
+
st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
|
113 |
+
|
114 |
+
else:
|
115 |
+
check = re.split(r'#\d+:', selection, 1)[1]
|
116 |
+
if check:
|
117 |
+
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
|
118 |
+
st.caption(':green[Kindly hold on for a few minutes while the Paraphrase texts are being generated]')
|
119 |
+
|
120 |
+
|
121 |
+
main_sentence = check
|
122 |
+
|
123 |
+
st.write("Main Sentence:")
|
124 |
+
st.write(main_sentence)
|
125 |
+
|
126 |
+
# Generate paraphrases
|
127 |
+
paraphrases = paraphrase(main_sentence)
|
128 |
+
|
129 |
+
# Display paraphrases with numbers
|
130 |
+
st.write("Paraphrases:")
|
131 |
+
for i, para in enumerate(paraphrases, 1):
|
132 |
+
st.write(f"Paraphrase {i}:")
|
133 |
+
st.write(para)
|
134 |
+
|
135 |
+
|
136 |
+
# Displaying the main sentence with highlighted longest common sequences
|
137 |
+
st.text("Main sentence with highlighted longest common sequences:")
|
138 |
+
st.text(highlighted_sentence)
|