import streamlit as st import plotly.graph_objects as go from transformers import pipeline import re import time import requests from PIL import Image import itertools import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import rgb2hex import matplotlib from matplotlib.colors import ListedColormap, rgb2hex import ipywidgets as widgets from IPython.display import display, HTML import re import pandas as pd from pprint import pprint from tenacity import retry from tqdm import tqdm # import tiktoken import scipy.stats import torch from transformers import GPT2LMHeadModel # import tiktoken import seaborn as sns from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from colorama import Fore, Style # import openai import re from termcolor import colored para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base") para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base") def paraphrase( question, num_beams=5, num_beam_groups=5, num_return_sequences=5, repetition_penalty=10.0, diversity_penalty=3.0, no_repeat_ngram_size=2, temperature=0.7, max_length=64 #128 ): input_ids = para_tokenizer( f'paraphrase: {question}', return_tensors="pt", padding="longest", max_length=max_length, truncation=True, ).input_ids outputs = para_model.generate( input_ids, temperature=temperature, repetition_penalty=repetition_penalty, num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size, num_beams=num_beams, num_beam_groups=num_beam_groups, max_length=max_length, diversity_penalty=diversity_penalty ) res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True) return res def remove_punctuations(text): # Remove punctuations while preserving hyphenated words return re.sub(r'(? len(longest_match): longest_match = substring return longest_match common_substrings = set() highlighted_text = [] for i in combined_words_list[0]: for j in combined_words_list[1]: for k in combined_words_list[2]: for l in combined_words_list[3]: for m in combined_words_list[4]: matching_portion = find_longest_match(i, j) matching_portion = find_longest_match(matching_portion, k) matching_portion = find_longest_match(matching_portion, l) matching_portion = find_longest_match(matching_portion, m) if matching_portion: common_substrings.add(matching_portion) prompt_list=["The official position of the United States on the Russia-Ukraine war has been consistent in supporting Ukraine's sovereignty, territorial integrity, and the peaceful resolution of the conflict." ,"Joe Biden said we’d not send U.S. troops to fight Russian troops in Ukraine, but we would provide robust military assistance and try to unify the Western world against Russia’s aggression."] options = [f"Prompt #{i+1}: {prompt_list[i]}" for i in range(len(prompt_list))] + ["Another Prompt..."] selection = st.selectbox("Choose a prompt from the dropdown below . Click on :blue['Another Prompt...'] , if you want to enter your own custom prompt.", options=options) check=[] if selection == "Another Prompt...": check = st.text_input("Enter your custom prompt...") check = " " + check if check: st.caption(f""":white_check_mark: Your input prompt is : {check}""") st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]') else: check = re.split(r'#\d+:', selection, 1)[1] if check: st.caption(f""":white_check_mark: Your input prompt is : {check}""") st.caption(':green[Kindly hold on for a few minutes while the Paraphrase texts are being generated]') main_sentence = check st.markdown("**Main Sentence**:") st.write(main_sentence) # Generate paraphrases paraphrases = paraphrase(main_sentence) # Extracting longest common sequences longest_common_sequences = find_longest_common_sequences(main_sentence, paraphrases) color_palette = ["#FF0000", "#008000", "#0000FF", "#FF00FF", "#00FFFF"] highlighted_sentences = [] highlighted_sentence = main_sentence for substring in remove_overlapping(common_substrings): highlighted_sentence = highlighted_sentence.replace(substring, colored(substring, 'white', 'on_blue')) highlighted_text.append(substring) st.markdown("Common substrings that occur in all five lists:") for substring in highlighted_text: st.write(substring) st.markdown("\nHighlighted Main Sentence:") st.markdown(highlighted_sentence) # # Highlighting sequences in main sentence and paraphrases # for sentence in [main_sentence] + paraphrases: # highlighted_sentence = sentence # for i, sequence in enumerate(longest_common_sequences): # color = color_palette[i % len(color_palette)] # highlighted_sentence = highlighted_sentence.replace(sequence, f"{sequence}") # highlighted_sentences.append(highlighted_sentence) # # Display paraphrases with numbers # st.markdown("**Paraphrases**:") # for i, para in enumerate(paraphrases, 1): # st.write(f"Paraphrase {i}:") # st.write(para) # # Displaying the main sentence with highlighted longest common sequences # st.markdown("**Main sentence with highlighted longest common sequences**:") # st.markdown(highlighted_sentences[0], unsafe_allow_html=True) # st.markdown("**Paraphrases with highlighted longest common sequences**:") # for paraphrase in highlighted_sentences[1:]: # st.markdown(paraphrase, unsafe_allow_html=True)