import streamlit as st import plotly.graph_objects as go from transformers import pipeline import re import time import requests from PIL import Image import itertools import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import rgb2hex import matplotlib from matplotlib.colors import ListedColormap, rgb2hex import ipywidgets as widgets from IPython.display import display, HTML import re import pandas as pd from pprint import pprint from tenacity import retry from tqdm import tqdm # import tiktoken import scipy.stats import torch from transformers import GPT2LMHeadModel # import tiktoken import seaborn as sns from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from colorama import Fore, Style # import openai import re # from termcolor import colored # from colorama import colored import string para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base") para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base") def paraphrase( question, num_beams=5, num_beam_groups=5, num_return_sequences=5, repetition_penalty=10.0, diversity_penalty=3.0, no_repeat_ngram_size=2, temperature=0.7, max_length=64 #128 ): input_ids = para_tokenizer( f'paraphrase: {question}', return_tensors="pt", padding="longest", max_length=max_length, truncation=True, ).input_ids outputs = para_model.generate( input_ids, temperature=temperature, repetition_penalty=repetition_penalty, num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size, num_beams=num_beams, num_beam_groups=num_beam_groups, max_length=max_length, diversity_penalty=diversity_penalty ) res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True) return res def remove_punctuations(text): # Remove punctuations while preserving hyphenated words, commas, and full stops return re.sub(r'(? len(longest_match): longest_match = substring return longest_match def remove_spaces_before_punctuation(text): import string punctuation = string.punctuation result = "" for i, char in enumerate(text): if i == 0: result += char else: if char in punctuation and text[i-1] == " ": result = result[:-1] + char else: result += char return result prompt_list=["The official position of the United States on the Russia-Ukraine war has been consistent in supporting Ukraine's sovereignty, territorial integrity, and the peaceful resolution of the conflict." ,"Joe Biden said we’d not send U.S. troops to fight Russian troops in Ukraine, but we would provide robust military assistance and try to unify the Western world against Russia’s aggression."] options = [f"Prompt #{i+1}: {prompt_list[i]}" for i in range(len(prompt_list))] + ["Another Prompt..."] selection = st.selectbox("Choose a prompt from the dropdown below . Click on :blue['Another Prompt...'] , if you want to enter your own custom prompt.", options=options) check=[] if selection == "Another Prompt...": check = st.text_input("Enter your custom prompt...") check = " " + check if check: st.caption(f""":white_check_mark: Your input prompt is : {check}""") st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]') else: check = re.split(r'#\d+:', selection, 1)[1] if check: st.caption(f""":white_check_mark: Your input prompt is : {check}""") st.caption(':green[Kindly hold on for a few minutes while the Paraphrase texts are being generated]') main_sentence = check st.markdown("**Main Sentence**:") st.write(main_sentence) # Generate paraphrases paraphrases = paraphrase(main_sentence) st.markdown("**Paraphrase Sentences**:") for i in paraphrases: st.write(i) matching_bigrams_list = [] combined_words_list = [] for paraphrase in paraphrases: # Find matching words matching_words = find_matching_words(main_sentence, paraphrase) matching_bigrams_list.append(matching_words) def combine_matching_bigrams(matching_bigrams): combined_words = [] combined_word = "" for i, bigram in enumerate(matching_bigrams): if i == 0: combined_word += bigram[0] + ('' if bigram[1] in string.punctuation else ' ') + bigram[1] elif bigram[0] == matching_bigrams[i-1][1]: combined_word += bigram[1] if bigram[1] in string.punctuation else ' ' + bigram[1] else: combined_words.append(combined_word.strip()) combined_word = bigram[0] + ('' if bigram[1] in string.punctuation else ' ') + bigram[1] # Append the last combined word combined_words.append(combined_word.strip()) return combined_words # Combine matching bigrams into single words combined_words = combine_matching_bigrams(matching_words) combined_words_list.append(combined_words) common_substrings = set() highlighted_text = [] for i in combined_words_list[0]: for j in combined_words_list[1]: for k in combined_words_list[2]: for l in combined_words_list[3]: for m in combined_words_list[4]: matching_portion = find_longest_match(i, j) matching_portion = find_longest_match(matching_portion, k) matching_portion = find_longest_match(matching_portion, l) matching_portion = find_longest_match(matching_portion, m) if matching_portion: common_substrings.add(matching_portion) # # Extracting longest common sequences # longest_common_sequences = find_longest_common_sequences(main_sentence, paraphrases) # color_palette = ["#FF0000", "#008000", "#0000FF", "#FF00FF", "#00FFFF"] # highlighted_sentences = [] # def highlight_text(text, substrings): # highlighted_text = text # for i, substring in enumerate(substrings): # highlighted_text = highlighted_text.replace(substring, f'{substring}') # return highlighted_text # # Assuming you have main_sentence, paraphrases, and common_substrings defined # colors = ['blue', 'green', 'orange', 'purple', 'red'] # Different colors for each paraphrase # # Highlight main_sentence # highlighted_main_sentence = highlight_text(main_sentence, common_substrings[0]) # st.markdown("\nHighlighted Main Sentence:") # st.write(highlighted_main_sentence, unsafe_allow_html=True) # # Highlight paraphrases # for i, (paraphrase, common_substring) in enumerate(zip(paraphrases, common_substrings[1:])): # highlighted_paraphrase = highlight_text(paraphrase, common_substring) # st.markdown(f"\nHighlighted Paraphrase {i+1}:") # st.write(highlighted_paraphrase, unsafe_allow_html=True) # Assuming you have defined common_substrings and remove_overlapping functions highlighted_sentence = remove_spaces_before_punctuation(" ".join(tokenize(main_sentence))) highlighted_text = [] for substring in remove_overlapping(common_substrings): highlighted_sentence = highlighted_sentence.replace(substring, f'{substring}') highlighted_text.append(substring) st.markdown("Common substrings that occur in all five lists:") for substring in highlighted_text: st.write(substring) st.markdown("**\nHighlighted Main Sentence with LCS:**") st.write(highlighted_sentence, unsafe_allow_html=True) highlighted_sentence_list = [] # Define colors for highlighting colors = ['blue', 'green', 'orange', 'purple', 'red'] for i in range(0, 5): highlighted_sentence = remove_spaces_before_punctuation(" ".join(tokenize(paraphrases[i]))) highlighted_text = [] # Assign a unique color to each paraphrase color = colors[i % len(colors)] # Iterate over substrings and apply the color for substring in combined_words_list[i]: highlighted_sentence = highlighted_sentence.replace(substring, f'{substring}') highlighted_text.append(substring) highlighted_sentence_list.append(highlighted_sentence) st.markdown("\nHighlighted Paraphrase Sentences with LCS:") for sentence in highlighted_sentence_list: st.write(sentence, unsafe_allow_html=True) # highlighted_main_sentence = main_sentence # # Iterate through each paraphrase and apply different colors to combined words # for i, combined_words in enumerate(combined_words_list): # color = colors[i % len(colors)] # Get color for this paraphrase # # Highlight combined words from this paraphrase with the corresponding color # for substring in combined_words: # highlighted_main_sentence = highlighted_main_sentence.replace(substring, f'{substring}') # st.markdown("\nHighlighted Main Sentence with LCS from All Paraphrases:") # st.write(highlighted_main_sentence, unsafe_allow_html=True) # colors = ['blue', 'green', 'orange', 'purple', 'red'] # highlighted_main_sentence = main_sentence # # Iterate through each paraphrase and apply different colors to combined words # for i, combined_words in enumerate(combined_words_list): # color = colors[i % len(colors)] # Get color for this paraphrase # # Highlight combined words from this paraphrase with the corresponding color # for substring in combined_words: # highlighted_main_sentence = highlighted_main_sentence.replace(substring, f'{substring}', 1) # Add a limit of 1 to only replace the first occurrence # st.markdown("\nHighlighted Main Sentence with LCS from All Paraphrases:") # st.write(highlighted_main_sentence, unsafe_allow_html=True) # # Highlighting sequences in main sentence and paraphrases # for sentence in [main_sentence] + paraphrases: # highlighted_sentence = sentence # for i, sequence in enumerate(longest_common_sequences): # color = color_palette[i % len(color_palette)] # highlighted_sentence = highlighted_sentence.replace(sequence, f"{sequence}") # highlighted_sentences.append(highlighted_sentence) # # Display paraphrases with numbers # st.markdown("**Paraphrases**:") # for i, para in enumerate(paraphrases, 1): # st.write(f"Paraphrase {i}:") # st.write(para) # # Displaying the main sentence with highlighted longest common sequences # st.markdown("**Main sentence with highlighted longest common sequences**:") # st.markdown(highlighted_sentences[0], unsafe_allow_html=True) # st.markdown("**Paraphrases with highlighted longest common sequences**:") # for paraphrase in highlighted_sentences[1:]: # st.markdown(paraphrase, unsafe_allow_html=True)