QAChatbot / app.py
Towhidul's picture
Create app.py
36f2167 verified
import gradio as gr
import os
import nest_asyncio
import re
from pathlib import Path
import typing as t
import base64
from mimetypes import guess_type
from llama_parse import LlamaParse
from llama_index.core.schema import TextNode
from llama_index.core import VectorStoreIndex, StorageContext, load_index_from_storage, Settings
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.query_engine import CustomQueryEngine
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.prompts import PromptTemplate
from llama_index.core.schema import ImageNode
from llama_index.core.base.response.schema import Response
from typing import Any, List, Optional
from llama_index.core.postprocessor.types import BaseNodePostprocessor
nest_asyncio.apply()
# Setting API keys
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
os.environ["LLAMA_CLOUD_API_KEY"] = os.getenv('LLAMA_CLOUD_API_KEY')
# Initialize the parser
parser = LlamaParse(
result_type="markdown",
parsing_instruction="You are given a medical textbook on medicine",
use_vendor_multimodal_model=True,
vendor_multimodal_model_name="gpt-4o-mini-2024-07-18",
show_progress=True,
verbose=True,
invalidate_cache=True,
do_not_cache=True,
num_workers=8,
language="en"
)
# Function to encode image to data URL
def local_image_to_data_url(image_path):
mime_type, _ = guess_type(image_path)
if mime_type is None:
mime_type = 'image/png'
with open(image_path, "rb") as image_file:
base64_encoded_data = base64.b64encode(image_file.read()).decode('utf-8')
return f"data:{mime_type};base64,{base64_encoded_data}"
# Function to get sorted image files
def get_page_number(file_name):
match = re.search(r"-page-(\d+)\.jpg$", str(file_name))
if match:
return int(match.group(1))
return 0
def _get_sorted_image_files(image_dir):
raw_files = [f for f in list(Path(image_dir).iterdir()) if f.is_file()]
sorted_files = sorted(raw_files, key=get_page_number)
return sorted_files
def get_text_nodes(md_json_objs, image_dir) -> t.List[TextNode]:
nodes = []
for result in md_json_objs:
json_dicts = result["pages"]
document_name = result["file_path"].split('/')[-1]
docs = [doc["md"] for doc in json_dicts]
image_files = _get_sorted_image_files(image_dir)
for idx, doc in enumerate(docs):
node = TextNode(
text=doc,
metadata={"image_path": str(image_files[idx]), "page_num": idx + 1, "document_name": document_name},
)
nodes.append(node)
return nodes
# Gradio interface functions
def upload_and_process_file(uploaded_file):
if uploaded_file is None:
return "Please upload a medical textbook (pdf)"
file_path = f"{uploaded_file.name}"
with open(file_path, "wb") as f:
f.write(uploaded_file.read())
md_json_objs = parser.get_json_result([file_path])
image_dicts = parser.get_images(md_json_objs, download_path="data_images")
return md_json_objs
def ask_question(md_json_objs, query_text, uploaded_query_image=None):
if not md_json_objs:
return "No knowledge base loaded. Please upload a file first."
text_nodes = get_text_nodes(md_json_objs, "data_images")
# Setup index and LLM
embed_model = OpenAIEmbedding(model="text-embedding-3-large")
llm = OpenAI("gpt-4o-mini-2024-07-18")
Settings.llm = llm
Settings.embed_model = embed_model
if not os.path.exists("storage_manuals"):
index = VectorStoreIndex(text_nodes, embed_model=embed_model)
index.storage_context.persist(persist_dir="./storage_manuals")
else:
ctx = StorageContext.from_defaults(persist_dir="./storage_manuals")
index = load_index_from_storage(ctx)
retriever = index.as_retriever()
# Encode query image if provided
encoded_image_url = None
if uploaded_query_image is not None:
query_image_path = f"{uploaded_query_image.name}"
with open(query_image_path, "wb") as img_file:
img_file.write(uploaded_query_image.read())
encoded_image_url = local_image_to_data_url(query_image_path)
# Setup query engine
QA_PROMPT_TMPL = """
You are a friendly medical chatbot designed to assist users by providing accurate and detailed responses to medical questions based on information from medical books.
### Context:
---------------------
{context_str}
---------------------
### Query Text:
{query_str}
### Query Image:
---------------------
{encoded_image_url}
---------------------
### Answer:
"""
QA_PROMPT = PromptTemplate(QA_PROMPT_TMPL)
gpt_4o_mm = OpenAIMultiModal(model="gpt-4o-mini-2024-07-18")
class MultimodalQueryEngine(CustomQueryEngine):
qa_prompt: PromptTemplate
retriever: BaseRetriever
multi_modal_llm: OpenAIMultiModal
node_postprocessors: Optional[List[BaseNodePostprocessor]]
def __init__(
self,
qa_prompt: PromptTemplate,
retriever: BaseRetriever,
multi_modal_llm: OpenAIMultiModal,
node_postprocessors: Optional[List[BaseNodePostprocessor]] = [],
):
super().__init__(
qa_prompt=qa_prompt,
retriever=retriever,
multi_modal_llm=multi_modal_llm,
node_postprocessors=node_postprocessors
)
def custom_query(self, query_str: str):
# retrieve most relevant nodes
nodes = self.retriever.retrieve(query_str)
# create image nodes from the image associated with those nodes
image_nodes = [
NodeWithScore(node=ImageNode(image_path=n.node.metadata["image_path"]))
for n in nodes
]
# create context string from parsed markdown text
ctx_str = "\n\n".join(
[r.node.get_content(metadata_mode=MetadataMode.LLM).strip() for r in nodes]
)
# prompt for the LLM
fmt_prompt = self.qa_prompt.format(
context_str=ctx_str, query_str=query_str, encoded_image_url=encoded_image_url
)
# use the multimodal LLM to interpret images and generate a response to the prompt
llm_response = self.multi_modal_llm.complete(
prompt=fmt_prompt,
image_documents=[image_node.node for image_node in image_nodes],
)
return Response(
response=str(llm_response),
source_nodes=nodes,
metadata={"text_nodes": nodes, "image_nodes": image_nodes},
)
query_engine = MultimodalQueryEngine(QA_PROMPT, retriever, gpt_4o_mm)
response = query_engine.custom_query(query_text)
return response.response
# Define Gradio interface
md_json_objs = []
def upload_wrapper(uploaded_file):
global md_json_objs
md_json_objs = upload_and_process_file(uploaded_file)
return "File successfully processed!"
iface = gr.Interface(
fn=ask_question,
inputs=[
gr.inputs.State(),
gr.inputs.Textbox(label="Enter your query:"),
gr.inputs.File(label="Upload a query image (if any):", optional=True)
],
outputs="text",
title="Medical Knowledge Base & Query System"
)
upload_iface = gr.Interface(
fn=upload_wrapper,
inputs=gr.inputs.File(label="Upload a medical textbook (pdf):"),
outputs="text",
title="Upload Knowledge Base"
)
app = gr.TabbedInterface([upload_iface, iface], ["Upload Knowledge Base", "Ask a Question"])
app.launch()