File size: 20,306 Bytes
9f620cb
 
 
 
 
 
 
 
 
 
 
3cf7a11
 
 
 
 
 
 
e1f3e45
 
9f620cb
3cf7a11
9f620cb
 
 
3cf7a11
 
9f620cb
 
 
3cf7a11
 
 
 
 
 
9f620cb
 
 
3cf7a11
 
9f620cb
 
3cf7a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f620cb
3cf7a11
9f620cb
 
3cf7a11
 
 
 
9f620cb
3cf7a11
 
 
 
 
 
9f620cb
 
3cf7a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f620cb
 
3dad413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf7a11
 
 
 
 
9f620cb
3cf7a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f620cb
089275b
 
 
 
f5717d7
9f620cb
 
 
3cf7a11
9f620cb
3cf7a11
 
 
 
 
9f620cb
3cf7a11
 
9f620cb
 
 
 
3cf7a11
 
 
 
 
 
 
 
 
9f620cb
3cf7a11
9f620cb
 
3cf7a11
a70531f
3cf7a11
 
caa8ad3
4568a73
 
3cf7a11
9f620cb
3cf7a11
77e13a3
9f620cb
3cf7a11
 
9f620cb
52b50a9
 
 
 
 
 
 
d1d80e9
 
 
 
52b50a9
 
 
df0e374
e1f3e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5950c17
b5ee463
5950c17
 
 
e1f3e45
b5ee463
5950c17
 
b5ee463
5950c17
 
 
b5ee463
 
e1f3e45
 
 
 
 
 
 
e07e4a5
fc9d154
 
 
 
 
 
 
f9a49bb
c8ac575
fc9d154
c8ac575
fc9d154
 
 
 
 
 
 
 
c8ac575
fc9d154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ac575
 
fc9d154
 
 
 
 
 
 
 
 
 
43ad268
 
680756b
 
fc9d154
 
 
 
 
 
 
 
f2f172c
fc9d154
 
 
680756b
fc9d154
 
 
 
 
 
 
 
 
ed4f0e8
680756b
 
fc9d154
 
680756b
fc9d154
 
 
 
 
 
 
a8a6fa8
fc9d154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4568a73
fc9d154
 
 
 
 
 
2fc4f47
fc9d154
 
 
 
a8a6fa8
fc9d154
 
2fc4f47
fc9d154
acb7838
fc9d154
 
20e694f
fc9d154
 
 
ed4f0e8
 
 
 
 
f2f172c
f88abde
 
 
 
 
 
4568a73
f88abde
46d3c09
 
a167e6e
63e3c09
4568a73
63e3c09
229667c
63e3c09
4568a73
 
f2f172c
63e3c09
 
 
 
 
 
4568a73
63e3c09
2fc4f47
4568a73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acb7838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import gradio as gr
from langchain_mistralai.chat_models import ChatMistralAI
from langchain.prompts import ChatPromptTemplate
import os
from pathlib import Path
import json
import faiss
import numpy as np
from langchain.schema import Document
import pickle
import re
import requests
from functools import lru_cache
import torch
from sentence_transformers import SentenceTransformer
import threading
from queue import Queue
import concurrent.futures
from typing import Generator, Tuple
import time

class OptimizedRAGLoader:
    def __init__(self,
                 docs_folder: str = "./docs",
                 splits_folder: str = "./splits",
                 index_folder: str = "./index"):
        
        self.docs_folder = Path(docs_folder)
        self.splits_folder = Path(splits_folder)
        self.index_folder = Path(index_folder)
        
        # Create folders if they don't exist
        for folder in [self.splits_folder, self.index_folder]:
            folder.mkdir(parents=True, exist_ok=True)
            
        # File paths
        self.splits_path = self.splits_folder / "splits.json"
        self.index_path = self.index_folder / "faiss.index"
        self.documents_path = self.index_folder / "documents.pkl"
        
        # Initialize components
        self.index = None
        self.indexed_documents = None
        
        # Initialize encoder model
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.encoder = SentenceTransformer("intfloat/multilingual-e5-large")
        self.encoder.to(self.device)
        
        # Initialize thread pool
        self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=4)
        
        # Initialize response cache
        self.response_cache = {}
        
    @lru_cache(maxsize=1000)
    def encode(self, text: str):
        """Cached encoding function"""
        with torch.no_grad():
            embeddings = self.encoder.encode(
                text,
                convert_to_numpy=True,
                normalize_embeddings=True
            )
        return embeddings
    
    def batch_encode(self, texts: list):
        """Batch encoding for multiple texts"""
        with torch.no_grad():
            embeddings = self.encoder.encode(
                texts,
                batch_size=32,
                convert_to_numpy=True,
                normalize_embeddings=True,
                show_progress_bar=False
            )
        return embeddings

    def load_and_split_texts(self):
        if self._splits_exist():
            return self._load_existing_splits()
            
        documents = []
        futures = []
        
        for file_path in self.docs_folder.glob("*.txt"):
            future = self.executor.submit(self._process_file, file_path)
            futures.append(future)
            
        for future in concurrent.futures.as_completed(futures):
            documents.extend(future.result())
            
        self._save_splits(documents)
        return documents
    
    def _process_file(self, file_path):
        with open(file_path, 'r', encoding='utf-8') as file:
            text = file.read()
            chunks = [s.strip() for s in re.split(r'(?<=[.!?])\s+', text) if s.strip()]
            
            return [
                Document(
                    page_content=chunk,
                    metadata={
                        'source': file_path.name,
                        'chunk_id': i,
                        'total_chunks': len(chunks)
                    }
                )
                for i, chunk in enumerate(chunks)
            ]

    def load_index(self) -> bool:
        """
        Charge l'index FAISS et les documents associés s'ils existent

        Returns:
            bool: True si l'index a été chargé, False sinon
        """
        if not self._index_exists():
            print("Aucun index trouvé.")
            return False

        print("Chargement de l'index existant...")
        try:
            # Charger l'index FAISS
            self.index = faiss.read_index(str(self.index_path))

            # Charger les documents associés
            with open(self.documents_path, 'rb') as f:
                self.indexed_documents = pickle.load(f)

            print(f"Index chargé avec {self.index.ntotal} vecteurs")
            return True

        except Exception as e:
            print(f"Erreur lors du chargement de l'index: {e}")
            return False

    def create_index(self, documents=None):
        if documents is None:
            documents = self.load_and_split_texts()
            
        if not documents:
            return False
            
        texts = [doc.page_content for doc in documents]
        embeddings = self.batch_encode(texts)
        
        dimension = embeddings.shape[1]
        self.index = faiss.IndexFlatL2(dimension)
        
        if torch.cuda.is_available():
            # Use GPU for FAISS if available
            res = faiss.StandardGpuResources()
            self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
            
        self.index.add(np.array(embeddings).astype('float32'))
        self.indexed_documents = documents
        
        # Save index and documents
        cpu_index = faiss.index_gpu_to_cpu(self.index) if torch.cuda.is_available() else self.index
        faiss.write_index(cpu_index, str(self.index_path))
        
        with open(self.documents_path, 'wb') as f:
            pickle.dump(documents, f)
            
        return True

    def _index_exists(self) -> bool:
        """Vérifie si l'index et les documents associés existent"""
        return self.index_path.exists() and self.documents_path.exists()

    def get_retriever(self, k: int = 5):
        if self.index is None:
            if not self.load_index():
                if not self.create_index():
                    raise ValueError("Unable to load or create index")

        def retriever_function(query: str) -> list:
            # Check cache first
            cache_key = f"{query}_{k}"
            if cache_key in self.response_cache:
                return self.response_cache[cache_key]

            query_embedding = self.encode(query)
            
            distances, indices = self.index.search(
                np.array([query_embedding]).astype('float32'),
                k
            )
            
            results = [
                self.indexed_documents[idx]
                for idx in indices[0]
                if idx != -1
            ]
            
            # Cache the results
            self.response_cache[cache_key] = results
            return results
            
        return retriever_function

# Initialize components
mistral_api_key = os.getenv("mistral_api_key")
llm = ChatMistralAI(
    model="mistral-large-latest",
    mistral_api_key=mistral_api_key,
    temperature=0.1,
    streaming=True,
)

rag_loader = OptimizedRAGLoader()
retriever = rag_loader.get_retriever(k=10)  # Reduced k for faster retrieval

# Cache for processed questions
question_cache = {}

prompt_template = ChatPromptTemplate.from_messages([
    ("system", """أنت مساعد مفيد يجيب على الأسئلة باللغة العربية باستخدام المعلومات المقدمة.
    استخدم المعلومات التالية للإجابة على السؤال:

    {context}

    إذا لم تكن المعلومات كافية للإجابة على السؤال بشكل كامل، قم بتوضيح ذلك.
    أجب بشكل موجز ودقيق.
    أذكر رقم المادة المصدر.
    أذكر اسم ورقم القانون انطلاقا من اسم الملف.
    """),
    ("human", "{question}")
])


# def process_question(question: str):  
#     """  
#     Process the question and yield the answer progressively.  
#     """  
#     # Check cache first  
#     if question in question_cache:  
#         yield question_cache[question]  # Retourne directement depuis le cache si disponible  

#     relevant_docs = retriever(question)  
#     context = "\n".join([doc.page_content for doc in relevant_docs])  

#     prompt = prompt_template.format_messages(  
#         context=context,  
#         question=question  
#     )  

#     response = ""  # Initialise la réponse  
#     # Ici, nous supposons que 'llm.stream' est un générateur qui renvoie des chunks  
#     for chunk in llm.stream(prompt):  # suppose que llm.stream renvoie des chunks de réponse  
#         if isinstance(chunk, str):  
#             response += chunk  # Accumulez la réponse si c'est déjà une chaîne  
#         else:  
#             response += chunk.content  # Sinon, prenez le contenu du chunk (si chunk est un type d'objet spécifique)  

#         yield response, context  # Renvoie la réponse mise à jour et le contexte  

#     # Mettez le résultat en cache à la fin  
#     # question_cache[question] = (response, context) 

def process_question(question: str) -> Generator[Tuple[str, str], None, None]:  
    """  
    Process the question and yield the answer progressively.  
    """  
    # Check cache first  
    if question in question_cache:  
        yield question_cache[question]  

    relevant_docs = retriever(question)  
    context = "\n".join([doc.page_content for doc in relevant_docs])  

    prompt = prompt_template.format_messages(  
        context=context,  
        question=question  
    )  

    current_response = ""
    for chunk in llm.stream(prompt):  
        if isinstance(chunk, str):
            current_response += chunk
        else:
            current_response += chunk.content  
        yield current_response, context

# CSS personnalisé avec l'importation de Google Fonts
custom_css = """
/* Import Google Fonts - Noto Sans Arabic */
@import url('https://fonts.googleapis.com/css2?family=Noto+Sans+Arabic:wght@300;400;500;600;700&display=swap');

/* Styles généraux */
:root {
    --primary-color: #4299e1;
    --secondary-color: #666666;
    --accent-color: #4299E1;
    --background-color: #ffffff;
    --border-radius: 8px;
    --font-family-arabic: 'Noto Sans Arabic', Arial, sans-serif;
}

/* Style de base */
body {
    font-family: var(--font-family-arabic);
    background-color: var(--background-color);
    color: var(--primary-color);
}

/* Styles pour le texte RTL */
.rtl-text {
    text-align: right !important;
    direction: rtl !important;
    font-family: var(--font-family-arabic) !important;
}

.rtl-text textarea {
    text-align: right !important;
    direction: rtl !important;
    padding: 1rem !important;
    border-radius: var(--border-radius) !important;
    border: 1px solid #E2E8F0 !important;
    background-color: #ffffff !important;
    color: var(--primary-color) !important;
    font-size: 1.1rem !important;
    line-height: 1.6 !important;
    font-family: var(--font-family-arabic) !important;
}

/* Style du titre */
.app-title {
    font-family: var(--font-family-arabic) !important;
    font-size: 2rem !important;
    font-weight: 700 !important;
    color: white !important; /* Texte en blanc */
    background-color: #3e2b1f !important; /* Fond marron foncé */
    margin-bottom: 1rem !important;
    margin-top: 1rem !important;
    text-align: center !important;
}

/* Styles des étiquettes */
.rtl-text label {
    font-family: var(--font-family-arabic) !important;
    font-size: 1.2rem !important;
    font-weight: 600 !important;
    color: #000000 !important; /* Couleur noire pour les étiquettes */
    margin-bottom: 0.5rem !important;
}

/* Centrer le bouton */
button.primary-button {
    font-family: var(--font-family-arabic) !important;
    background-color: var(--accent-color) !important;
    color: white !important;
    padding: 0.75rem 1.5rem !important;
    border-radius: var(--border-radius) !important;
    font-weight: 600 !important;
    font-size: 1.1rem !important;
    transition: all 0.3s ease !important;
    width: 200px !important; /* Réduit la largeur du bouton */
    margin: 0 auto !important; /* Centrage horizontal */
    display: block !important; /* Nécessaire pour que le margin auto fonctionne */
}


button.primary-button:hover {
    background-color: #3182CE !important;
    transform: translateY(-1px) !important;
}

/* Styles des boîtes de texte */
.textbox-container {
    background-color: #b45f06 !important;
    padding: 1.5rem !important;
    border-radius: var(--border-radius) !important;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
    margin-bottom: 1rem !important;
}

/* Animation de chargement */
.loading {
    animation: pulse 2s infinite;
}

@keyframes pulse {
    0% { opacity: 1; }
    50% { opacity: 0.5; }
    100% { opacity: 1; }
}

/* Style du statut */
.status-text {
    font-family: var(--font-family-arabic) !important;
    text-align: center !important;
    color: var(--secondary-color) !important;
    font-size: 1rem !important;
    margin-top: 1rem !important;
}
"""

# Interface Gradio avec streaming
with gr.Blocks(css=custom_css) as iface:
    with gr.Column(elem_classes="container"):
        gr.Markdown(
            "# نظام الأسئلة والأجوبة الذكي",
            elem_classes="app-title rtl-text"
        )
        
        with gr.Column(elem_classes="textbox-container"):
            input_text = gr.Textbox(
                label="السؤال",
                placeholder="اكتب سؤالك هنا...",
                lines=1,
                elem_classes="rtl-text"
            )
        
        with gr.Row():
            with gr.Column():
                answer_box = gr.Textbox(
                    label="الإجابة",
                    lines=5,
                    elem_classes="rtl-text textbox-container"
                )
        
        submit_btn = gr.Button(
            "إرسال السؤال",
            elem_classes="primary-button",
            variant="primary"
        )

        # def stream_response(question):
        #     response_stream = process_question(question)
        #     for response, _ in response_stream:
        #         gr.update(value=response)
        #     yield response

        def stream_response(question):
            for chunk_response, _ in process_question(question):
                yield chunk_response
                time.sleep(0.05)

        submit_btn.click(
            fn=stream_response,
            inputs=input_text,
            outputs=answer_box,
            api_name="predict",
            queue=False
        )

if __name__ == "__main__":
    iface.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        max_threads=3,
        show_error=True
    )

# # Interface Gradio avec la correction
# with gr.Blocks(css=custom_css) as iface:
#     with gr.Column(elem_classes="container"):
#         gr.Markdown(
#             "# نظام الأسئلة والأجوبة الذكي",
#             elem_classes="app-title rtl-text"
#         )
        
#         with gr.Column(elem_classes="textbox-container"):
#             input_text = gr.Textbox(
#                 label="السؤال",
#                 placeholder="اكتب سؤالك هنا...",
#                 lines=1,
#                 elem_classes="rtl-text"
#             )
        
#         with gr.Row():
#             with gr.Column():
#                 answer_box = gr.Textbox(
#                     label="الإجابة",
#                     lines=5,
#                     elem_classes="rtl-text textbox-container"
#                 )
#             # with gr.Column(scale=1):
#             #     context_box = gr.Textbox(
#             #         label="السياق المستخدم",
#             #         lines=4,
#             #         elem_classes="rtl-text textbox-container"
#             #     )
        
#         submit_btn = gr.Button(
#             "إرسال السؤال",
#             elem_classes="primary-button",
#             variant="primary"
#         )
       

#         def on_submit(question):
#             for response, context in process_question(question):
#                 yield response  # Yield À CHAQUE itération

        
#         submit_btn.click(
#             fn=on_submit,
#             inputs=input_text,
#             outputs=answer_box,
#             api_name="predict",
#             queue=False,
# )


# if __name__ == "__main__":
#     iface.launch(
#         share=True,
#         server_name="0.0.0.0",
#         server_port=7860,
#         max_threads=3,
#         show_error=True,
#     )

# def process_question(question: str):  
#     """  
#     Process the question and yield the answer progressively.  
#     """  
#     # Check cache first  
#     if question in question_cache:  
#         yield question_cache[question]  # Retourne directement depuis le cache si disponible  

#     relevant_docs = retriever(question)  
#     context = "\n".join([doc.page_content for doc in relevant_docs])  

#     prompt = prompt_template.format_messages(  
#         context=context,  
#         question=question  
#     )  

#     response = ""  # Initialise la réponse  
#     # Ici, nous supposons que 'llm.stream' est un générateur qui renvoie des chunks  
#     for chunk in llm.stream(prompt):  # suppose que llm.stream renvoie des chunks de réponse  
#         if isinstance(chunk, str):  
#             response += chunk  # Accumulez la réponse si c'est déjà une chaîne  
#         else:  
#             response += chunk.content  # Sinon, prenez le contenu du chunk (si chunk est un type d'objet spécifique)  

#         yield response, context  # Renvoie la réponse mise à jour et le contexte  

#     # Mettez le résultat en cache à la fin  
#     question_cache[question] = (response, context)   

# # Custom CSS for right-aligned text in textboxes  
# custom_css = """  
# .rtl-text {  
#     text-align: right !important;  
#     direction: rtl !important;  
# }  
# .rtl-text textarea {  
#     text-align: right !important;  
#     direction: rtl !important;  
# }  
# """  

# # Gradio interface with queue  
# with gr.Blocks(css=custom_css) as iface:  
#     with gr.Column():  
#         input_text = gr.Textbox(  
#             label="السؤال",  
#             placeholder="اكتب سؤالك هنا...",  
#             lines=2,  
#             elem_classes="rtl-text"  
#         )  
        
#         with gr.Row():  
#             answer_box = gr.Textbox(  
#                 label="الإجابة",  
#                 lines=4,  
#                 elem_classes="rtl-text"  
#             )  
#             context_box = gr.Textbox(  
#                 label="السياق المستخدم",  
#                 lines=8,  
#                 elem_classes="rtl-text"  
#             )  
        
#         submit_btn = gr.Button("إرسال")  
        
#         submit_btn.click(  
#             fn=process_question,  
#             inputs=input_text,  
#             outputs=[answer_box, context_box],  
#             api_name="predict",  
#             queue=True  # Utiliser le système de queue pour un traitement asynchrone  
#         )  

# if __name__ == "__main__":  
#     iface.launch(  
#         share=True,  
#         server_name="0.0.0.0",  
#         server_port=7860,  
#         max_threads=3,  # Controls concurrency  
#         show_error=True  
#     )



# def process_question(question: str):  
#     """  
#     Process the question and return the answer and context
#     """  
#     # Check cache first  
#     if question in question_cache:  
#         return question_cache[question], ""  # Retourne la réponse cachée et un statut vide
#     relevant_docs = retriever(question)  
#     context = "\n".join([doc.page_content for doc in relevant_docs])  
#     prompt = prompt_template.format_messages(  
#         context=context,  
#         question=question  
#         )  
#     response = ""
#     for chunk in llm.stream(prompt):
#         if isinstance(chunk, str):  
#             response += chunk
#         else:  
#             response += chunk.content
#     # Mettez le résultat en cache à la fin  
#     question_cache[question] = (response, context)  
#     return response, context