|
import gradio as gr |
|
from langchain_mistralai.chat_models import ChatMistralAI |
|
from langchain.prompts import ChatPromptTemplate |
|
from langchain_deepseek import ChatDeepSeek |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
import os |
|
from pathlib import Path |
|
import json |
|
import faiss |
|
import numpy as np |
|
from langchain.schema import Document |
|
import pickle |
|
import re |
|
import requests |
|
from functools import lru_cache |
|
import torch |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.cross_encoder import CrossEncoder |
|
import threading |
|
from queue import Queue |
|
import concurrent.futures |
|
from typing import Generator, Tuple |
|
import time |
|
|
|
class OptimizedRAGLoader: |
|
def __init__(self, |
|
docs_folder: str = "./docs", |
|
splits_folder: str = "./splits", |
|
index_folder: str = "./index"): |
|
|
|
self.docs_folder = Path(docs_folder) |
|
self.splits_folder = Path(splits_folder) |
|
self.index_folder = Path(index_folder) |
|
|
|
|
|
for folder in [self.splits_folder, self.index_folder]: |
|
folder.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
self.splits_path = self.splits_folder / "splits.json" |
|
self.index_path = self.index_folder / "faiss.index" |
|
self.documents_path = self.index_folder / "documents.pkl" |
|
|
|
|
|
self.index = None |
|
self.indexed_documents = None |
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.encoder = SentenceTransformer("intfloat/multilingual-e5-large") |
|
self.encoder.to(self.device) |
|
self.reranker = model = CrossEncoder("cross-encoder/mmarco-mMiniLMv2-L12-H384-v1",trust_remote_code=True) |
|
|
|
|
|
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=4) |
|
|
|
|
|
self.response_cache = {} |
|
|
|
@lru_cache(maxsize=1000) |
|
def encode(self, text: str): |
|
"""Cached encoding function""" |
|
with torch.no_grad(): |
|
embeddings = self.encoder.encode( |
|
text, |
|
convert_to_numpy=True, |
|
normalize_embeddings=True |
|
) |
|
return embeddings |
|
|
|
def batch_encode(self, texts: list): |
|
"""Batch encoding for multiple texts""" |
|
with torch.no_grad(): |
|
embeddings = self.encoder.encode( |
|
texts, |
|
batch_size=32, |
|
convert_to_numpy=True, |
|
normalize_embeddings=True, |
|
show_progress_bar=False |
|
) |
|
return embeddings |
|
|
|
def load_and_split_texts(self): |
|
if self._splits_exist(): |
|
return self._load_existing_splits() |
|
|
|
documents = [] |
|
futures = [] |
|
|
|
for file_path in self.docs_folder.glob("*.txt"): |
|
future = self.executor.submit(self._process_file, file_path) |
|
futures.append(future) |
|
|
|
for future in concurrent.futures.as_completed(futures): |
|
documents.extend(future.result()) |
|
|
|
self._save_splits(documents) |
|
return documents |
|
|
|
def _process_file(self, file_path): |
|
with open(file_path, 'r', encoding='utf-8') as file: |
|
text = file.read() |
|
chunks = [s.strip() for s in re.split(r'(?<=[.!?])\s+', text) if s.strip()] |
|
|
|
return [ |
|
Document( |
|
page_content=chunk, |
|
metadata={ |
|
'source': file_path.name, |
|
'chunk_id': i, |
|
'total_chunks': len(chunks) |
|
} |
|
) |
|
for i, chunk in enumerate(chunks) |
|
] |
|
|
|
def load_index(self) -> bool: |
|
""" |
|
Charge l'index FAISS et les documents associés s'ils existent |
|
|
|
Returns: |
|
bool: True si l'index a été chargé, False sinon |
|
""" |
|
if not self._index_exists(): |
|
print("Aucun index trouvé.") |
|
return False |
|
|
|
print("Chargement de l'index existant...") |
|
try: |
|
|
|
self.index = faiss.read_index(str(self.index_path)) |
|
|
|
|
|
with open(self.documents_path, 'rb') as f: |
|
self.indexed_documents = pickle.load(f) |
|
|
|
print(f"Index chargé avec {self.index.ntotal} vecteurs") |
|
return True |
|
|
|
except Exception as e: |
|
print(f"Erreur lors du chargement de l'index: {e}") |
|
return False |
|
|
|
def create_index(self, documents=None): |
|
if documents is None: |
|
documents = self.load_and_split_texts() |
|
|
|
if not documents: |
|
return False |
|
|
|
texts = [doc.page_content for doc in documents] |
|
embeddings = self.batch_encode(texts) |
|
|
|
dimension = embeddings.shape[1] |
|
self.index = faiss.IndexFlatL2(dimension) |
|
|
|
if torch.cuda.is_available(): |
|
|
|
res = faiss.StandardGpuResources() |
|
self.index = faiss.index_cpu_to_gpu(res, 0, self.index) |
|
|
|
self.index.add(np.array(embeddings).astype('float32')) |
|
self.indexed_documents = documents |
|
|
|
|
|
cpu_index = faiss.index_gpu_to_cpu(self.index) if torch.cuda.is_available() else self.index |
|
faiss.write_index(cpu_index, str(self.index_path)) |
|
|
|
with open(self.documents_path, 'wb') as f: |
|
pickle.dump(documents, f) |
|
|
|
return True |
|
|
|
def _index_exists(self) -> bool: |
|
"""Vérifie si l'index et les documents associés existent""" |
|
return self.index_path.exists() and self.documents_path.exists() |
|
|
|
def get_retriever(self, k: int = 10): |
|
if self.index is None: |
|
if not self.load_index(): |
|
if not self.create_index(): |
|
raise ValueError("Unable to load or create index") |
|
|
|
def retriever_function(query: str) -> list: |
|
|
|
cache_key = f"{query}_{k}" |
|
if cache_key in self.response_cache: |
|
return self.response_cache[cache_key] |
|
|
|
query_embedding = self.encode(query) |
|
|
|
distances, indices = self.index.search( |
|
np.array([query_embedding]).astype('float32'), |
|
k |
|
) |
|
|
|
results = [ |
|
self.indexed_documents[idx] |
|
for idx in indices[0] |
|
if idx != -1 |
|
] |
|
|
|
|
|
self.response_cache[cache_key] = results |
|
return results |
|
|
|
return retriever_function |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gemini_api_key = os.getenv("GEMINI_KEY") |
|
llm = ChatGoogleGenerativeAI( |
|
model="gemini-1.5-pro", |
|
temperature=0, |
|
google_api_key=gemini_api_key, |
|
disable_streaming=True, |
|
) |
|
|
|
|
|
rag_loader = OptimizedRAGLoader() |
|
retriever = rag_loader.get_retriever(k=5) |
|
|
|
|
|
question_cache = {} |
|
|
|
prompt_template = ChatPromptTemplate.from_messages([ |
|
("system", """Vous êtes un assistant juridique expert qualifié. Analysez et répondez aux questions juridiques avec précision. |
|
|
|
PROCESSUS D'ANALYSE : |
|
1. Analysez le contexte fourni : {context} |
|
2. Utilisez la recherche web si la reponse n'existe pas dans le contexte |
|
3. Privilégiez les sources officielles et la jurisprudence récente |
|
|
|
Question à traiter : {question} |
|
"""), |
|
("human", "{question}") |
|
]) |
|
|
|
|
|
|
|
import gradio as gr |
|
from typing import Iterator |
|
|
|
|
|
css = """ |
|
/* Reset RTL global */ |
|
*, *::before, *::after { |
|
direction: rtl !important; |
|
text-align: right !important; |
|
} |
|
|
|
body { |
|
font-family: 'Amiri', sans-serif; /* Utilisation de la police Arabe andalouse */ |
|
background-color: black; /* Fond blanc */ |
|
color: black !important; /* Texte noir */ |
|
direction: rtl !important; /* Texte en arabe aligné à droite */ |
|
} |
|
|
|
.gradio-container { |
|
direction: rtl !important; /* Alignement RTL pour toute l'interface */ |
|
} |
|
|
|
/* Éléments de formulaire */ |
|
input[type="text"], |
|
.gradio-textbox input, |
|
textarea { |
|
border-radius: 20px; |
|
padding: 10px 15px; |
|
border: 2px solid #000; |
|
font-size: 16px; |
|
width: 80%; |
|
margin: 0 auto; |
|
text-align: right !important; |
|
} |
|
|
|
/* Surcharge des styles de placeholder */ |
|
input::placeholder, |
|
textarea::placeholder { |
|
text-align: right !important; |
|
direction: rtl !important; |
|
} |
|
|
|
/* Boutons */ |
|
.gradio-button { |
|
border-radius: 20px; |
|
font-size: 16px; |
|
background-color: #007BFF; |
|
color: white; |
|
padding: 10px 20px; |
|
margin: 10px auto; |
|
border: none; |
|
width: 80%; |
|
display: block; |
|
} |
|
|
|
.gradio-button:hover { |
|
background-color: #0056b3; |
|
} |
|
|
|
.gradio-chatbot .message { |
|
border-radius: 20px; |
|
padding: 10px; |
|
margin: 10px 0; |
|
background-color: #f1f1f1; |
|
border: 1px solid #ddd; |
|
width: 80%; |
|
text-align: right !important; |
|
direction: rtl !important; |
|
} |
|
|
|
/* Messages utilisateur alignés à gauche */ |
|
.gradio-chatbot .user-message { |
|
margin-right: auto; |
|
background-color: #e3f2fd; |
|
text-align: right !important; |
|
direction: rtl !important; |
|
} |
|
|
|
/* Messages assistant alignés à droite */ |
|
.gradio-chatbot .assistant-message { |
|
margin-right: auto; |
|
background-color: #f1f1f1; |
|
text-align: right |
|
} |
|
|
|
/* Corrections RTL pour les éléments spécifiques */ |
|
.gradio-textbox textarea { |
|
text-align: right !important; |
|
} |
|
|
|
.gradio-dropdown div { |
|
text-align: right !important; |
|
} |
|
""" |
|
|
|
def process_question(question: str) -> Iterator[str]: |
|
if question in question_cache: |
|
response, docs = question_cache[question] |
|
yield response + "\nSources:\n" + "\n".join([doc.page_content for doc in docs]) |
|
return |
|
|
|
relevant_docs = retriever(question) |
|
|
|
|
|
|
|
context = [doc.page_content for doc in relevant_docs] |
|
text_pairs = [[question, text] for text in context] |
|
scores = rag_loader.reranker.predict(text_pairs) |
|
|
|
scored_docs = list(zip(scores, context, relevant_docs)) |
|
|
|
scored_docs.sort(key=lambda x: x[0], reverse=True) |
|
reranked_docs = [d[2].page_content for d in scored_docs][:10] |
|
|
|
|
|
prompt = prompt_template.format_messages( |
|
context=reranked_docs, |
|
question=question |
|
) |
|
full_response = "" |
|
try: |
|
for chunk in llm.stream(prompt): |
|
if isinstance(chunk, str): |
|
current_chunk = chunk |
|
else: |
|
current_chunk = chunk.content |
|
full_response += current_chunk |
|
|
|
|
|
|
|
sources = [doc.metadata.get("source") for doc in relevant_docs] |
|
sources = list(set([os.path.splitext(source)[0] for source in sources])) |
|
|
|
|
|
sources = [d[2].metadata['source'] for d in scored_docs][:10] |
|
sources = list(set([os.path.splitext(source)[0] for source in sources])) |
|
|
|
|
|
yield full_response + "\n\n\nالمصادر المحتملة :\n" + "\n".join(sources) |
|
|
|
question_cache[question] = (full_response, relevant_docs) |
|
except Exception as e: |
|
yield f"Erreur lors du traitement : {str(e)}" |
|
|
|
|
|
def gradio_stream(question: str, chat_history: list) -> Iterator[list]: |
|
""" |
|
Format the output for Gradio Chatbot component with streaming. |
|
""" |
|
full_response = "" |
|
try: |
|
for partial_response in process_question(question): |
|
full_response = partial_response |
|
|
|
updated_chat = chat_history + [[question, partial_response]] |
|
yield updated_chat |
|
except Exception as e: |
|
|
|
updated_chat = chat_history + [[question, f"Erreur : {str(e)}"]] |
|
yield updated_chat |
|
|
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
gr.Markdown("<h2 style='text-align: center !important;'>هذا تطبيق للاجابة على الأسئلة المتعلقة بالقوانين المغربية</h2>") |
|
|
|
|
|
with gr.Row(): |
|
message = gr.Textbox(label="أدخل سؤالك", placeholder="اكتب سؤالك هنا", elem_id="question_input") |
|
|
|
with gr.Row(): |
|
send = gr.Button("بحث", elem_id="search_button") |
|
|
|
with gr.Row(): |
|
chatbot = gr.Chatbot(label="") |
|
|
|
|
|
def user_input(user_message, chat_history): |
|
return "", chat_history + [[user_message, None]] |
|
|
|
send.click(user_input, [message, chatbot], [message, chatbot], queue=False) |
|
send.click(gradio_stream, [message, chatbot], chatbot) |
|
|
|
demo.launch(share=True) |
|
|