Spaces:
Sleeping
Sleeping
TrishanuDas
commited on
Commit
·
0463385
1
Parent(s):
27c2589
minor fixes
Browse files- README.md +31 -3
- api_endpoint.py +36 -0
- app.py +25 -0
- app_with_fastapi.py +25 -0
- check.ipynb +205 -0
- model.py +16 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Cifar10 Classification
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.33.0
|
8 |
app_file: app.py
|
@@ -11,3 +11,31 @@ license: apache-2.0
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Cifar10 Classification
|
3 |
+
emoji: 🤗
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.33.0
|
8 |
app_file: app.py
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
|
16 |
+
### To access the app, follow these steps:
|
17 |
+
|
18 |
+
|
19 |
+
Step 1: Access the app directly on the link (This does not use the FastAPI endpoints):
|
20 |
+
[https://huggingface.co/spaces/TrishanuDas/cifar10_classification](https://huggingface.co/spaces/TrishanuDas/cifar10_classification)
|
21 |
+
|
22 |
+
Step 2: Use the Streamlit app via the FastAPI endpoint.
|
23 |
+
- Run the FastAPI server on any instance using the following command:
|
24 |
+
```
|
25 |
+
uvicorn api_endpoint:app --reload --host <host_name>
|
26 |
+
```
|
27 |
+
- Change the HOST variable on the `app_with_fastapi.py` file.
|
28 |
+
- Execute the app_with_fastapi.py file using the following command:
|
29 |
+
```
|
30 |
+
streamlit run app_with_fastapi.py
|
31 |
+
```
|
32 |
+
|
33 |
+
### Files
|
34 |
+
|
35 |
+
The following files are present in this repository:
|
36 |
+
|
37 |
+
- `app.py`: The main Streamlit app file to run directly.
|
38 |
+
- `requirements.txt`: The list of Python dependencies required by the app.
|
39 |
+
- `model.py`: Contains the code for loading and using the pre-trained model.
|
40 |
+
- `app_endpoint.py`: Contains api_endpoint for the prediction.
|
41 |
+
- `app_with_fastapi.py`: Contains the code for the Streamlit app with FastAPI endpoint.
|
api_endpoint.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from fastapi import FastAPI, HTTPException, Depends
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
from fastapi import File, UploadFile
|
5 |
+
from PIL import Image
|
6 |
+
import model
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
# Add the CORSMiddleware to enable Cross-Origin Resource Sharing
|
10 |
+
app.add_middleware(
|
11 |
+
CORSMiddleware,
|
12 |
+
allow_origins=["*"], # Allow all origins
|
13 |
+
allow_credentials=True,
|
14 |
+
allow_methods=["*"],
|
15 |
+
allow_headers=["*"],
|
16 |
+
)
|
17 |
+
|
18 |
+
@app.post("/upload_image_for_inference") # This is the endpoint for updating the bot's Knowledge Base
|
19 |
+
async def upload_image(file: UploadFile = File(...)):
|
20 |
+
# Save the uploaded image to a file
|
21 |
+
with open('image.jpg', 'wb') as image:
|
22 |
+
contents = await file.read() # Read the content of the uploaded file
|
23 |
+
image.write(contents) # Write the content to the image file
|
24 |
+
|
25 |
+
# Process the image
|
26 |
+
image_pil = Image.open('image.jpg') # Open the image using PIL
|
27 |
+
|
28 |
+
# Predict the image class
|
29 |
+
predicted_class = model.predict(image_pil)
|
30 |
+
# print(f"Predicted label: {predicted_class}")
|
31 |
+
|
32 |
+
image_pil.close()
|
33 |
+
# Delete the image file after processing
|
34 |
+
os.remove("image.jpg")
|
35 |
+
|
36 |
+
return {'predicted_class': predicted_class}
|
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import streamlit as st
|
3 |
+
import requests
|
4 |
+
import model
|
5 |
+
|
6 |
+
# Streamlit layout
|
7 |
+
st.title("CIFAR10 Prediction")
|
8 |
+
|
9 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
10 |
+
|
11 |
+
if uploaded_file is not None:
|
12 |
+
# Convert uploaded file to PIL image
|
13 |
+
image = Image.open(uploaded_file)
|
14 |
+
|
15 |
+
# Display the uploaded image
|
16 |
+
with st.container(height=300):
|
17 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
18 |
+
|
19 |
+
if st.button('Predict'):
|
20 |
+
predicted_class = model.predict(image)
|
21 |
+
|
22 |
+
if predicted_class is not None:
|
23 |
+
st.header(f"Predicted Label: {predicted_class}")
|
24 |
+
else:
|
25 |
+
st.error("Error processing image. Please try again!")
|
app_with_fastapi.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
# Streamlit layout
|
5 |
+
st.title("CIFAR10 Prediction")
|
6 |
+
|
7 |
+
HOST = "http://localhost:8000"
|
8 |
+
|
9 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
10 |
+
|
11 |
+
if uploaded_file is not None:
|
12 |
+
with st.container(height=300):
|
13 |
+
st.image(uploaded_file, caption='Uploaded Image', use_column_width=True)
|
14 |
+
|
15 |
+
if st.button('Predict'):
|
16 |
+
# Send image to FastAPI endpoint
|
17 |
+
files = {'file': uploaded_file}
|
18 |
+
response = requests.post(f"{HOST}/upload_image_for_inference", files=files)
|
19 |
+
|
20 |
+
if response.status_code == 200:
|
21 |
+
result = response.json()
|
22 |
+
st.header(f"Predicted Label: {result['predicted_class']}")
|
23 |
+
else:
|
24 |
+
st.error("Error processing image. Please try again.")
|
25 |
+
|
check.ipynb
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 73,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import torch \n",
|
10 |
+
"import pickle\n",
|
11 |
+
"import matplotlib.pyplot as plt\n",
|
12 |
+
"import numpy as np\n",
|
13 |
+
"import time"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 75,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"IMAGE_SIZE = 224 # We need to resize the images given resnet takes input of image size >= 224\n",
|
23 |
+
"\n",
|
24 |
+
"mean, std = [0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261]\n",
|
25 |
+
"classes = ('airplane', \n",
|
26 |
+
" 'automobile', \n",
|
27 |
+
" 'bird',\n",
|
28 |
+
" 'cat',\n",
|
29 |
+
" 'deer',\n",
|
30 |
+
" 'dog', \n",
|
31 |
+
" 'frog', \n",
|
32 |
+
" 'horse', \n",
|
33 |
+
" 'ship',\n",
|
34 |
+
" 'truck')\n",
|
35 |
+
"\n",
|
36 |
+
"if torch.cuda.is_available():\n",
|
37 |
+
" torch.set_default_device('cuda')\n",
|
38 |
+
"\n",
|
39 |
+
"def show_data(img):\n",
|
40 |
+
" try:\n",
|
41 |
+
" plt.imshow(img[0])\n",
|
42 |
+
" except Exception as e:\n",
|
43 |
+
" print(e)\n",
|
44 |
+
" print(img[0].shape, img[0].permute(1,2,0).shape)\n",
|
45 |
+
" plt.imshow(img[0].permute(1,2,0))\n",
|
46 |
+
" plt.title('y = '+ str(img[1]))\n",
|
47 |
+
" plt.show()\n",
|
48 |
+
" \n",
|
49 |
+
"# We need to convert the images to numpy arrays as tensors are not compatible with matplotlib.\n",
|
50 |
+
"def im_convert(tensor):\n",
|
51 |
+
" #Lets\n",
|
52 |
+
" img = tensor.cpu().clone().detach().numpy() #\n",
|
53 |
+
" img = img.transpose(1, 2, 0)\n",
|
54 |
+
" img = img * np.array(tuple(mean)) + np.array(tuple(std))\n",
|
55 |
+
" img = img.clip(0, 1) # Clipping the size to print the images later\n",
|
56 |
+
" return img"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 64,
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"def unpickle(file):\n",
|
66 |
+
" with open(file, 'rb') as fo:\n",
|
67 |
+
" data_dict = pickle.load(fo, encoding='bytes')\n",
|
68 |
+
" \n",
|
69 |
+
" # Decode keys from bytes to strings\n",
|
70 |
+
" decoded_dict = {}\n",
|
71 |
+
" for key, value in data_dict.items():\n",
|
72 |
+
" decoded_key = key.decode('utf-8') # Assuming UTF-8 encoding\n",
|
73 |
+
" decoded_dict[decoded_key] = value\n",
|
74 |
+
" \n",
|
75 |
+
" return decoded_dict\n"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 76,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"decoded_dict = unpickle('./test_batch')\n",
|
85 |
+
"decoded_dict\n",
|
86 |
+
"data = torch.tensor(decoded_dict['data']).reshape([10000,3,32,32])\n",
|
87 |
+
"dataset = {\"image\":data, \"target\": torch.tensor(decoded_dict[\"labels\"])}"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": 77,
|
93 |
+
"metadata": {},
|
94 |
+
"outputs": [
|
95 |
+
{
|
96 |
+
"data": {
|
97 |
+
"text/plain": [
|
98 |
+
"dict_keys(['batch_label', 'labels', 'data', 'filenames'])"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
"execution_count": 77,
|
102 |
+
"metadata": {},
|
103 |
+
"output_type": "execute_result"
|
104 |
+
}
|
105 |
+
],
|
106 |
+
"source": [
|
107 |
+
"decoded_dict.keys()"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": 78,
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [],
|
115 |
+
"source": [
|
116 |
+
"idx = 0\n",
|
117 |
+
"image = dataset['image'][idx]\n",
|
118 |
+
"label = dataset[\"target\"][idx].item()"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 79,
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [
|
126 |
+
{
|
127 |
+
"data": {
|
128 |
+
"text/plain": [
|
129 |
+
"'cat'"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
"execution_count": 79,
|
133 |
+
"metadata": {},
|
134 |
+
"output_type": "execute_result"
|
135 |
+
}
|
136 |
+
],
|
137 |
+
"source": [
|
138 |
+
"classes[label]"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": 82,
|
144 |
+
"metadata": {},
|
145 |
+
"outputs": [
|
146 |
+
{
|
147 |
+
"name": "stdout",
|
148 |
+
"output_type": "stream",
|
149 |
+
"text": [
|
150 |
+
"cat\n",
|
151 |
+
"Time taken: 0.013 s\n"
|
152 |
+
]
|
153 |
+
}
|
154 |
+
],
|
155 |
+
"source": [
|
156 |
+
"# Load model directly\n",
|
157 |
+
"from transformers import AutoImageProcessor, AutoModelForImageClassification\n",
|
158 |
+
"\n",
|
159 |
+
"processor = AutoImageProcessor.from_pretrained(\"heyitskim1912/AML_A2_Q4\")\n",
|
160 |
+
"model = AutoModelForImageClassification.from_pretrained(\"heyitskim1912/AML_A2_Q4\")\n",
|
161 |
+
"\n",
|
162 |
+
"inputs = processor(image, return_tensors=\"pt\")\n",
|
163 |
+
"\n",
|
164 |
+
"start_time = time.time()\n",
|
165 |
+
"with torch.no_grad():\n",
|
166 |
+
" logits = model(**inputs).logits\n",
|
167 |
+
"\n",
|
168 |
+
"# model predicts one of the 1000 ImageNet classes\n",
|
169 |
+
"predicted_label = logits.argmax(-1).item()\n",
|
170 |
+
"print(model.config.id2label[predicted_label])\n",
|
171 |
+
"end_time = time.time()\n",
|
172 |
+
"time_taken = round(end_time - start_time, 3)\n",
|
173 |
+
"print(f\"Time taken: {time_taken} s\")"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": null,
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [],
|
181 |
+
"source": []
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"metadata": {
|
185 |
+
"kernelspec": {
|
186 |
+
"display_name": "PyTorchenv",
|
187 |
+
"language": "python",
|
188 |
+
"name": "python3"
|
189 |
+
},
|
190 |
+
"language_info": {
|
191 |
+
"codemirror_mode": {
|
192 |
+
"name": "ipython",
|
193 |
+
"version": 3
|
194 |
+
},
|
195 |
+
"file_extension": ".py",
|
196 |
+
"mimetype": "text/x-python",
|
197 |
+
"name": "python",
|
198 |
+
"nbconvert_exporter": "python",
|
199 |
+
"pygments_lexer": "ipython3",
|
200 |
+
"version": "3.10.9"
|
201 |
+
}
|
202 |
+
},
|
203 |
+
"nbformat": 4,
|
204 |
+
"nbformat_minor": 2
|
205 |
+
}
|
model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
2 |
+
import torch
|
3 |
+
|
4 |
+
processor = AutoImageProcessor.from_pretrained("heyitskim1912/AML_A2_Q4")
|
5 |
+
model = AutoModelForImageClassification.from_pretrained("heyitskim1912/AML_A2_Q4")
|
6 |
+
|
7 |
+
def predict(image_pil):
|
8 |
+
inputs = processor(image_pil, return_tensors="pt")
|
9 |
+
|
10 |
+
with torch.no_grad():
|
11 |
+
logits = model(**inputs).logits
|
12 |
+
|
13 |
+
# Get predicted label
|
14 |
+
predicted_label = logits.argmax(-1).item()
|
15 |
+
predicted_class = model.config.id2label[predicted_label]
|
16 |
+
return predicted_class
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
pillow
|
3 |
+
streamlit
|
4 |
+
requests
|
5 |
+
fastapi
|
6 |
+
torch
|
7 |
+
uvicorn
|
8 |
+
gunicorn
|