File size: 1,089 Bytes
97be51f
3e9ea02
daa40a8
 
97be51f
 
 
 
 
3e9ea02
97be51f
 
daa40a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
---
title: Scrum expert
emoji: πŸ“š
colorFrom: purple
colorTo: blue
sdk: streamlit
sdk_version: 1.42.0
app_file: app.py
pinned: false
short_description: Scrum expert
---

# Introduction

This is a RAG showcase easily adaptable for any set of documents (mainly pdf, docx, txt, csv).

# How to run it locally ?

* Clone the git repository
* Replace the documents in ./data by your documents
* Customize the constants at the beginning of app.py
* Create a .streamlit directory
* Create a .streamlit/secrets.toml file :
`openai_key="your-akash-api-key"` (get your free key here : https://chatapi.akash.network/ > Get Started)
* With .venv activated : `pip install -r requirements.txt`
* Then `python -m streamlit run app.py`

***Note*** : Every time you change the embedding model, it's necessary to delete the "storage" directory to rebuild the local vector db

# How to run it on a new HuggingFace Space ?

When it runs locally, just commit and push to a new HuggingFace Space. You need to fill your Akash api key as a Secret in the "Settings > Variables and secrets" section of your space.