File size: 8,896 Bytes
7f5560f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84f3f79
7f5560f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a946e3f
5a42d80
7f5560f
 
 
 
 
 
 
09a1072
7f5560f
 
 
09a1072
7f5560f
 
 
 
 
 
 
 
 
 
7ad740f
7f5560f
7ad740f
7f5560f
7ad740f
7f5560f
7ad740f
7f5560f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt

class MultiLimbCoreModel:
    def __init__(self, no_of_turns, cs_area, lengths, length_lg_2, mu_r, r, series_res):
        self.no_of_turns = no_of_turns
        self.cs_area = cs_area
        self.lengths = lengths  # Dictionary keys 'a', 'b', 'c', 'w'
        self.length_lg_2 = length_lg_2
        self.mu_0 = 4 * np.pi * 1.0e-7
        self.mu_r = mu_r
        self.mu = self.mu_0 * self.mu_r
        self.r = r
        self.series_res = series_res
        self.flux_linkage = 0
        self.ind_current = 0
        self.t1 = 0
        self.dt = 1.0e-6

        # Data for plotting
        self.simulation_times = []
        self.inductor_currents = []
        self.voltage_sources = []
        self.inductor_emfs = []
        self.inductor_flux_linkages = []
        self.indmodel_flux = []
        self.indmodel_flux2 = []
        self.indmodel_flux3 = []
        self.phi_values = []

    def calculate_resistances(self):
        R1 = (2 * self.lengths['a'] + self.lengths['b'] + 2.0 * self.lengths['w'] - 2 * self.length_lg_2) / (self.mu * self.cs_area)
        Rg1 = (2 * self.length_lg_2) / (self.mu_0 * self.cs_area)
        R2 = (self.lengths['b'] + self.lengths['w']) / (self.mu * self.cs_area)
        R3 = (2 * self.lengths['c'] + self.lengths['b'] + 2.0 * self.lengths['w'] - 2 * self.length_lg_2) / (self.mu * self.cs_area)
        Rg2 = (self.length_lg_2) / (self.mu_0 * self.cs_area)
        R_eq = R1 + Rg1 + (R2 * (R3 + Rg2) / (R2 + R3 + Rg2))
        return R_eq, R1, Rg1, R2, Rg2, R3

    def update(self, vmeas, t_clock):
        if t_clock >= self.t1:
            R_eq, R1, Rg1, R2, Rg2, R3 = self.calculate_resistances()
            k1 = (vmeas - self.ind_current * self.r)
            k2 = (vmeas - (self.ind_current + self.dt * k1 / 2.0) * self.r)
            k3 = (vmeas - (self.ind_current + self.dt * k2 / 2.0) * self.r)
            k4 = (vmeas - (self.ind_current + self.dt * k3) * self.r)
            k = (k1 + 2 * k2 + 2 * k3 + k4) * self.dt / 6.0
            self.flux_linkage += k

            flux = self.flux_linkage / self.no_of_turns
            self.ind_current = flux * R_eq / self.no_of_turns
            phi = self.no_of_turns * self.ind_current / R_eq
            vsrc = vmeas - self.ind_current * self.series_res
            indmodel_emf = vmeas - self.ind_current * self.r

            # Multi Core Limbs
            indmodel_flux = flux
            indmodel_flux2 = flux * (R2 * (R3 + Rg2) / (R2 + R3 + Rg2)) / R2
            indmodel_flux3 = flux * (R2 * (R3 + Rg2) / (R2 + R3 + Rg2)) / R3

            # Store data for plotting
            self.simulation_times.append(t_clock)
            self.inductor_currents.append(self.ind_current)
            self.voltage_sources.append(vsrc)
            self.inductor_emfs.append(indmodel_emf)
            self.inductor_flux_linkages.append(self.flux_linkage)
            self.indmodel_flux.append(indmodel_flux)  # Limb 1
            self.indmodel_flux2.append(indmodel_flux2)  # Limb 2
            self.indmodel_flux3.append(indmodel_flux3)  # Limb 3
            self.phi_values.append(phi)

            self.t1 += self.dt

    def plot_reluctances_of_each_limb(self):
        fig, ax = plt.subplots(figsize=(12, 8))
        ax.plot(self.simulation_times, self.indmodel_flux, label='Limb 1 Flux')
        ax.plot(self.simulation_times, self.indmodel_flux2, label='Limb 2 Flux')
        ax.plot(self.simulation_times, self.indmodel_flux3, label='Limb 3 Flux')
        ax.set_xlabel('Time (s)')
        ax.set_ylabel('Flux (Weber)')
        ax.legend()
        ax.set_title('Flux in Each Limb Over Time')
        st.pyplot(fig)

    def plot_reluctances_of_each_limb_log_base_10(self):
        fig, ax = plt.subplots(figsize=(12, 8))
        ax.plot(self.simulation_times, self.indmodel_flux, label='Limb 1 Flux')
        ax.plot(self.simulation_times, self.indmodel_flux2, label='Limb 2 Flux')
        ax.plot(self.simulation_times, self.indmodel_flux3, label='Limb 3 Flux')
        ax.set_xlabel('Time (s)')
        ax.set_ylabel('Flux (Weber)') 
        ax.set_yscale('log', base=10)
        ax.legend()
        ax.set_title('Flux in Each Limb Over Time (Log-Scale)')
        st.pyplot(fig)

    def plot_inductor_currents(self):
        fig, ax = plt.subplots(figsize=(12, 8))
        ax.plot(self.simulation_times, self.inductor_currents, label='Inductor Current')
        ax.set_xlabel('Time (s)')
        ax.set_ylabel('Current (Amperes)')
        ax.legend()
        ax.set_title('Inductor Current Over Time')
        st.pyplot(fig)

    def plot_inductor_currents_log_base_10(self):
        fig, ax = plt.subplots(figsize=(12, 8))
        ax.plot(self.simulation_times, self.inductor_currents, label='Inductor Current')
        ax.set_xlabel('Time (s)')
        ax.set_ylabel('Current (Amperes)')
        ax.set_yscale('log', base=10)
        ax.legend()
        ax.set_title('Inductor Current Over Time (Log-Scale)')
        st.pyplot(fig)

    def plot_results(self):
        fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8))
        ax1.plot(self.simulation_times, self.inductor_flux_linkages, label='Flux Linkage')
        ax1.set_xlabel('Time (s)')
        ax1.set_ylabel('Flux Linkage')
        ax1.legend()
        ax1.set_title('Flux Linkage Over Time')

        ax2.plot(self.simulation_times, self.inductor_emfs, label='Induced EMF', color='red')
        ax2.set_xlabel('Time (s)')
        ax2.set_ylabel('EMF')
        ax2.legend()
        ax2.set_title('Induced EMF Over Time')
        plt.tight_layout()
        st.pyplot(fig)

    def plot_results_log_base_10(self):
        fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8))
        ax1.plot(self.simulation_times, self.inductor_flux_linkages, label='Flux Linkage')
        ax1.set_xlabel('Time (s)')
        ax1.set_ylabel('Flux Linkage')
        ax1.set_yscale('log', base=10)
        ax1.legend()
        ax1.set_title('Flux Linkage Over Time (Log-Scale)')

        ax2.plot(self.simulation_times, self.inductor_emfs, label='Induced EMF', color='red')
        ax2.set_xlabel('Time (s)')
        ax2.set_ylabel('EMF')
        ax2.set_xscale('log', base=10)
        ax2.legend()
        ax2.set_title('Induced EMF Over Time (Log-Scale)')
        plt.tight_layout()
        st.pyplot(fig)

    def plot_phi_values(self):
        fig, ax = plt.subplots(figsize=(12, 8))
        ax.plot(self.simulation_times, self.phi_values, label='Phi Values')
        ax.set_xlabel('Time (s)')
        ax.set_ylabel('Phi (Weber)')
        ax.legend()
        ax.set_title('Phi Values Over Time')
        st.pyplot(fig)

    def plot_phi_values_log_base_10(self):
        fig, ax = plt.subplots(figsize=(12, 8))
        ax.plot(self.simulation_times, self.phi_values, label='Phi Values')
        ax.set_xlabel('Time (s)')
        ax.set_ylabel('Phi (Weber)')
        ax.set_yscale('log', base=10)
        ax.legend()
        ax.set_title('Phi Values Over Time (Log-Scale')
        st.pyplot(fig)

# Streamlit App
def main():
    st.title('Multi-Limb Core Model Simulation')

    # Input parameters
    no_of_turns = st.number_input('Number of Turns',min_value=125, max_value=777, value=500)
    cs_area = st.number_input('Cross-Sectional Area',value=9.0e-4)
    lengths = {
        'a': st.number_input('Length a', min_value=1.0e-2, max_value=25.0e-2, value=5.0e-2),
        'b': st.number_input('Length b', min_value=1.125e-2, max_value=28.8e-2,value=4.5e-2),
        'c': st.number_input('Length c', min_value=0.50e-2, max_value=88.4e-2, value=4.0e-2),
        'w': st.number_input('Length w', min_value=0.625e-2, max_value=100e-2,value=3.0e-2)
    }
    length_lg_2 = st.number_input('Length lg_2', value=0.1e-3)
    mu_r = st.number_input('Relative Permeability', min_value=1000.0, max_value=1000.0, value=1000.0)
    r = st.number_input('Resistance', min_value=0.01, max_value=0.99, value=0.01)
    series_res = st.number_input('Series Resistance',min_value=2, max_value=22, value=10)
    vmeas = st.number_input('Voltage Measurement', min_value=5, max_value=100,value=100)
    simulation_time = st.number_input('Simulation Time', min_value=0.125, max_value=0.625,value=0.125)

    if st.button('Run Simulation'):
        model = MultiLimbCoreModel(no_of_turns, cs_area, lengths, length_lg_2, mu_r, r, series_res)
        t_clock = 0
        while t_clock < simulation_time:
            model.update(vmeas, t_clock)
            t_clock += model.dt

        st.subheader('Results')
        model.plot_reluctances_of_each_limb()
        model.plot_reluctances_of_each_limb_log_base_10()
        model.plot_inductor_currents()
        model.plot_inductor_currents_log_base_10()
        model.plot_results()
        model.plot_results_log_base_10()
        model.plot_phi_values()
        model.plot_phi_values_log_base_10()

if __name__ == '__main__':
    main()