File size: 11,308 Bytes
9fade2a
bfc5ccd
 
 
 
 
7261a26
 
 
bfc5ccd
7261a26
 
bfc5ccd
7261a26
bfc5ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7261a26
 
bfc5ccd
 
 
 
 
 
 
2654ca5
 
 
 
 
00b0a08
2654ca5
da4ab75
2654ca5
 
bfc5ccd
2654ca5
da4ab75
 
 
bfc5ccd
 
b929465
4c92274
bfc5ccd
 
 
5cec4e6
4ddde86
 
 
7e7d22f
2aae5e7
4ddde86
bfc5ccd
b929465
 
bfc5ccd
 
cf0d3f3
 
6d807bc
 
0c73edf
bfc5ccd
 
cf0d3f3
67c5ec1
ca768c1
0b1f8c9
bfc5ccd
 
 
f420005
bfc5ccd
f420005
bfc5ccd
 
 
 
 
 
5cec4e6
bfc5ccd
 
 
4b4042c
bfc5ccd
 
 
 
fd620cd
 
bfc5ccd
 
 
 
 
6799636
232a1d9
0730956
 
1166ace
0730956
bfc5ccd
 
c9fcacb
7ef77c5
 
c9fcacb
bfc5ccd
 
 
 
c9fcacb
bfc5ccd
ab9235e
0730956
bfc5ccd
 
ab9235e
19975bf
bfc5ccd
 
 
 
 
 
 
 
 
 
 
 
7261a26
bfc5ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82981eb
bfc5ccd
 
 
 
9fade2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
<!DOCTYPE html>
<html lang="en-US">
  <head>
    <meta charset="UTF-8">

<!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Gradient Cuff | Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by
Exploring Refusal Loss Landscapes </title>
<meta property="og:title" content="Gradient Cuff" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes" />
<meta property="og:description" content="Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes" />
<script type="application/ld+json">
{"@context":"https://schema.org","@type":"WebSite","description":"Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes","headline":"Gradient Cuff","name":"Gradient Cuff","url":"https://huggingface.co/spaces/gregH/Gradient Cuff"}</script>
<!-- End Jekyll SEO tag -->

    <link rel="preconnect" href="https://fonts.gstatic.com">
    <link rel="preload" href="https://fonts.googleapis.com/css?family=Open+Sans:400,700&display=swap" as="style" type="text/css" crossorigin>
    <meta name="viewport" content="width=device-width, initial-scale=1">
    <meta name="theme-color" content="#157878">
    <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">

    <link rel="stylesheet" href="assets/css/bootstrap/bootstrap.min.css?v=90447f115a006bc45b738d9592069468b20e2551">
    <link rel="stylesheet" href="assets/css/style.css?v=90447f115a006bc45b738d9592069468b20e2551">
    <!-- start custom head snippets, customize with your own _includes/head-custom.html file -->
    <link rel="stylesheet" href="assets/css/custom_style.css?v=90447f115a006bc45b738d9592069468b20e2551">
    <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
    <link rel="stylesheet" href="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/themes/smoothness/jquery-ui.css">
    <script src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/jquery-ui.min.js"></script>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.9.4/Chart.js"></script>
    <script src="assets/js/calibration.js?v=90447f115a006bc45b738d9592069468b20e2551"></script>





<!-- for mathjax support -->
    <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
    <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>


<!-- end custom head snippets -->

  </head>
  <body>
    <a id="skip-to-content" href="#content">Skip to the content.</a>

    <header class="page-header" role="banner">
      <h1 class="project-name">Gradient Cuff</h1>
      <h2 class="project-tagline">Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes</h2>
      
      
    </header>

    <main id="content" class="main-content" role="main">
      <h2 id="introduction">Introduction</h2>

<p>Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a 
  query and the LLM generates an answer. To reduce harm and misuse, efforts have been made to align 
  these LLMs to human values using advanced training techniques such as Reinforcement Learning from 
  Human Feedback (RLHF). However, recent studies have highlighted the vulnerability of LLMs to adversarial 
  jailbreak attempts aiming at subverting the embedded safety guardrails. To address this challenge,
 we define and investigate the <strong>Refusal Loss</strong> of LLMs and then propose a method called <strong>Gradient Cuff</strong> to 
  detect jailbreak attempts. In this demonstration, we first introduce the concept of "Jailbreak". Then we present the refusal loss 
  landscape and propose the Gradient Cuff based on the characteristics of this landscape. Lastly, we compare Gradient Cuff with other jailbreak defense 
  methods and show the defense performance.
</p>

<h2 id="what-is-jailbreak">What is Jailbreak?</h2>
<p>Jailbreak attacks involve maliciously inserting or replacing tokens in the user instruction or rewriting it to bypass and circumvent 
  the safety guardrails of aligned LLMs. A notable example is that a jailbroken LLM would be tricked into 
  generating hate speech targeting certain groups of people, as demonstrated below.</p>

<div class="container">
<div id="jailbreak-intro" class="row align-items-center jailbreak-intro-sec">
<img id="jailbreak-intro-img" src="./jailbreak.png" />
</div>
</div>

<h3 id="refusal-loss">Refusal Loss</h3>
<p>Current transformer-based LLMs will return different responses to the same query due to the randomness of 
  autoregressive sampling-based generation. With this randomness, it is an 
  interesting phenomenon that a malicious user query will sometimes be rejected by the target LLM, but 
  sometimes be able to bypass the safety guardrail. Based on this observation, for a given LLM T_\theta
  parameterized with $\theta$, we define the refusal loss function $\phi_\theta(x)$ for a given input user query $x$ as below:
</p>

<div class="container jailbreak-intro-sec">
<div><img id="jailbreak-intro-img" src="images/metrics/intro-metric-example.png" /></div>
</div>

<div id="refusal-loss-formula" class="container">
<div id="refusal-loss-formula-list" class="row align-items-center formula-list">
  <a href="#ECE-formula" class="selected">Refusal Loss</a>
  <a href="#SCE-formula">Refusal Loss Approximation</a>
  <a href="#ACE-formula">Gradient Estimation</a>
  <div style="clear: both"></div>
</div>
<div id="refusal-loss-formula-content" class="row align-items-center">
  <span id="ECE-formula" class="formula" style="">$$\displaystyle \phi_\theta(x)=1-\mathbb{E}_{y \sim T_\theta(x)} JB(y)$$</span>
  <span id="SCE-formula" class="formula" style="display: none;">$$\displaystyle f_\theta(x)=1-\frac{1}{N}\sum_{i=1}^N JB(y_i)$$</span>
  <span id="ACE-formula" class="formula" style="display: none;">$$\displaystyle g_\theta(x)=\sum_{i=1}^P \frac{f_\theta(x\oplus \mu u_i)-f_\theta(x)}{\mu} u_i $$</span>
</div>
</div>

<h2 id="proposed-approach-gradient-cuff">Proposed Approach: Gradient Cuff</h2>

<div class="container"><img id="gradient-cuff-header" src="images/header.png" /></div>

<h2 id="demonstration">Demonstration</h2>
<p>In the current research, a reliability diagram is drawn to show the calibration performance of a model. However, since
reliability diagrams often only provide fixed bar graphs statically, further explanation from the chart is limited. In
this demonstration, we show how to make reliability diagrams interactive and insightful to help researchers and
developers gain more insights from the graph. Specifically, we provide three CIFAR-100 classification models
in this demonstration.  Multiple Bin numbers are also supported </p>

<p>We hope this tool could also facilitate the development process.</p>

<div id="jailbreak-demo" class="container">
<div class="row align-items-center">
  <div class="row" style="margin: 10px 0 0">
      <div class="models-list">
        <span style="margin-right: 1em;">Models</span>
        <span class="radio-group"><input type="radio" id="LLaMA2" class="options" name="models" value="llama2_7b_chat" checked="" /><label for="LLaMA2" class="option-label">LLaMA-2-7B-Chat</label></span>
        <span class="radio-group"><input type="radio" id="Vicuna" class="options" name="models" value="vicuna_7b_v1.5" /><label for="Vicuna" class="option-label">Vicuna-7B-V1.5</label></span>
      </div>
  </div>
</div>
<div class="row align-items-center">
  <div class="col-4">
    <div id="defense-methods">
      <div class="row align-items-center"><input type="radio" id="defense_ppl" class="options" name="defense" value="ppl" /><label for="defense_ppl" class="defense">Perplexity Filter</label></div>
      <div class="row align-items-center"><input type="radio" id="defense_smoothllm" class="options" name="defense" value="smoothllm" /><label for="defense_smoothllm" class="defense">SmoothLLM</label></div>
      <div class="row align-items-center"><input type="radio" id="defense_erase_check" class="options" name="defense" value="erase_check" /><label for="defense_erase_check" class="defense">Erase-Check</label></div>
      <div class="row align-items-center"><input type="radio" id="defense_self_reminder" class="options" name="defense" value="self_reminder" /><label for="defense_self_reminder" class="defense">Self-Reminder</label></div>
      <div class="row align-items-center"><input type="radio" id="defense_gradient_cuff" class="options" name="defense" value="gradient_cuff" /><label for="defense_gradient_cuff" class="defense"><span style="font-weight: bold;">Gradient Cuff</span></label></div>
    </div>
    <div class="row align-items-center">
      <div class="attack-success-rate"><span class="jailbreak-metric">Average Malicious Refusal Rate</span><span class="attack-success-rate-value" id="asr-value">0.95875</span></div>
    </div>
    <div class="row align-items-center">
      <div class="benign-refusal-rate"><span class="jailbreak-metric">Benign Refusal Rate</span><span class="benign-refusal-rate-value" id="brr-value">0.05000</span></div>
    </div>
  </div>
  <div class="col-8">
  <figure class="figure">
    <img id="reliability-diagram" src="demo_results/gradient_cuff_llama2_7b_chat_threshold_100.png" alt="CIFAR-100 Calibrated Reliability Diagram (Full)" />
    <div class="slider-container">
      <div class="slider-label"><span>Perplexity Threshold</span></div>
      <div class="slider-content" id="ppl-slider"><div id="ppl-threshold" class="ui-slider-handle"></div></div>
    </div>
    <div class="slider-container">
      <div class="slider-label"><span>Gradient Threshold</span></div>
      <div class="slider-content" id="gradient-norm-slider"><div id="gradient-norm-threshold" class="slider-value ui-slider-handle"></div></div>
    </div>
    <figcaption class="figure-caption">
    </figcaption>
  </figure>
  </div>
</div>
</div>

<h2 id="citations">Citations</h2>
<p>If you find Neural Clamping helpful and useful for your research, please cite our main paper as follows:</p>

<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>@inproceedings{hsiung2023nctv,
  title={{NCTV: Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes}}, 
  author={Lei Hsiung, Yung-Chen Tang and Pin-Yu Chen and Tsung-Yi Ho},
  booktitle={Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence},
  publisher={Association for the Advancement of Artificial Intelligence},
  year={2023},
  month={February}
}

@misc{tang2022neural_clamping,
  title={{Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration}}, 
  author={Yung-Chen Tang and Pin-Yu Chen and Tsung-Yi Ho},
  year={2022},
  eprint={2209.11604},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
}
</code></pre></div></div>


      <footer class="site-footer">
        
          <span class="site-footer-owner">Gradient Cuff is maintained by <a href="https://gregxmhu.github.io/">Xiaomeng Hu</a></a>.</span>
        
      </footer>
    </main>
  </body>
</html>