Spaces:
Runtime error
Runtime error
import os | |
import shutil | |
import traceback | |
from enum import Enum | |
import commentjson as json | |
import gradio as gr | |
import tiktoken | |
from loguru import logger | |
from src import shared | |
from src.config import ( | |
retrieve_proxy, | |
local_embedding, | |
websearch_engine, | |
bing_search_api_key, | |
google_search_api_key, | |
serper_search_api_key, | |
searchapi_api_key, | |
google_search_cx, | |
) | |
from src.index_func import construct_index | |
from src.presets import ( | |
MODEL_TOKEN_LIMIT, | |
DEFAULT_TOKEN_LIMIT, | |
TOKEN_OFFSET, | |
REDUCE_TOKEN_FACTOR, | |
STANDARD_ERROR_MSG, | |
NO_APIKEY_MSG, | |
BILLING_NOT_APPLICABLE_MSG, | |
NO_INPUT_MSG, | |
HISTORY_DIR, | |
INITIAL_SYSTEM_PROMPT, | |
PROMPT_TEMPLATE, | |
WEBSEARCH_PTOMPT_TEMPLATE, | |
) | |
from src.search_engine import ( | |
search_with_google, | |
search_with_duckduckgo, | |
search_with_bing, | |
search_with_searchapi, | |
search_with_serper, | |
) | |
from src.utils import ( | |
i18n, | |
construct_assistant, | |
construct_user, | |
save_file, | |
hide_middle_chars, | |
count_token, | |
new_auto_history_filename, | |
get_history_names, | |
init_history_list, | |
get_history_list, | |
replace_special_symbols, | |
get_first_history_name, | |
add_source_numbers, | |
add_details, | |
replace_today, | |
chinese_preprocessing_func, | |
) | |
class ModelType(Enum): | |
Unknown = -1 | |
OpenAI = 0 | |
ChatGLM = 1 | |
OpenAIInstruct = 2 | |
OpenAIVision = 3 | |
Claude = 4 | |
Qwen = 5 | |
LLaMA = 6 | |
ZhipuAI = 7 | |
def get_type(cls, model_name: str): | |
model_name_lower = model_name.lower() | |
if "gpt" in model_name_lower: | |
if "instruct" in model_name_lower: | |
model_type = ModelType.OpenAIInstruct | |
elif "vision" in model_name_lower: | |
model_type = ModelType.OpenAIVision | |
else: | |
model_type = ModelType.OpenAI | |
elif "chatglm" in model_name_lower: | |
model_type = ModelType.ChatGLM | |
elif "llama" in model_name_lower or "alpaca" in model_name_lower or "yi" in model_name_lower: | |
model_type = ModelType.LLaMA | |
elif model_name_lower in ["glm-3-turbo","glm4"]: # todo: more check | |
model_type = ModelType.ZhipuAI | |
else: | |
model_type = ModelType.Unknown | |
return model_type | |
class BaseLLMModel: | |
def __init__( | |
self, | |
model_name, | |
system_prompt=INITIAL_SYSTEM_PROMPT, | |
temperature=1.0, | |
top_p=1.0, | |
n_choices=1, | |
stop="", | |
max_generation_token=None, | |
presence_penalty=0, | |
frequency_penalty=0, | |
logit_bias=None, | |
user="", | |
single_turn=False, | |
) -> None: | |
self.history = [] | |
self.all_token_counts = [] | |
self.model_name = model_name | |
self.model_type = ModelType.get_type(model_name) | |
self.token_upper_limit = MODEL_TOKEN_LIMIT.get(model_name, DEFAULT_TOKEN_LIMIT) | |
self.interrupted = False | |
self.system_prompt = system_prompt | |
self.api_key = None | |
self.need_api_key = False | |
self.history_file_path = get_first_history_name(user) | |
self.user_name = user | |
self.chatbot = [] | |
self.default_single_turn = single_turn | |
self.default_temperature = temperature | |
self.default_top_p = top_p | |
self.default_n_choices = n_choices | |
self.default_stop_sequence = stop | |
self.default_max_generation_token = max_generation_token | |
self.default_presence_penalty = presence_penalty | |
self.default_frequency_penalty = frequency_penalty | |
self.default_logit_bias = logit_bias | |
self.default_user_identifier = user | |
self.single_turn = single_turn | |
self.temperature = temperature | |
self.top_p = top_p | |
self.n_choices = n_choices | |
self.stop_sequence = stop | |
self.max_generation_token = max_generation_token | |
self.presence_penalty = presence_penalty | |
self.frequency_penalty = frequency_penalty | |
self.logit_bias = logit_bias | |
self.user_identifier = user | |
self.metadata = {} | |
def get_answer_stream_iter(self): | |
"""stream predict, need to be implemented | |
conversations are stored in self.history, with the most recent question, in OpenAI format | |
should return a generator, each time give the next word (str) in the answer | |
""" | |
logger.warning("stream predict not implemented, using at once predict instead") | |
response, _ = self.get_answer_at_once() | |
yield response | |
def get_answer_at_once(self): | |
"""predict at once, need to be implemented | |
conversations are stored in history, with the most recent question, in OpenAI format | |
Should return: | |
the answer (str) | |
total token count (int) | |
""" | |
logger.warning("at once predict not implemented, using stream predict instead") | |
response_iter = self.get_answer_stream_iter() | |
count = 0 | |
response = '' | |
for response in response_iter: | |
count += 1 | |
return response, sum(self.all_token_counts) + count | |
def billing_info(self): | |
"""get billing infomation, inplement if needed""" | |
return BILLING_NOT_APPLICABLE_MSG | |
def count_token(self, user_input): | |
"""get token count from input, implement if needed""" | |
return len(user_input) | |
def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""): | |
def get_return_value(): | |
return chatbot, status_text | |
status_text = i18n("开始实时传输回答……") | |
if fake_input: | |
chatbot.append((fake_input, "")) | |
else: | |
chatbot.append((inputs, "")) | |
user_token_count = self.count_token(inputs) | |
self.all_token_counts.append(user_token_count) | |
logger.debug(f"输入token计数: {user_token_count}") | |
if display_append: | |
display_append = ( | |
'\n\n<hr class="append-display no-in-raw" />' + display_append | |
) | |
partial_text = "" | |
token_increment = 1 | |
for partial_text in self.get_answer_stream_iter(): | |
if type(partial_text) == tuple: | |
partial_text, token_increment = partial_text | |
chatbot[-1] = (chatbot[-1][0], partial_text + display_append) | |
self.all_token_counts[-1] += token_increment | |
status_text = self.token_message() | |
yield get_return_value() | |
if self.interrupted: | |
self.recover() | |
break | |
self.history.append(construct_assistant(partial_text)) | |
def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""): | |
if fake_input: | |
chatbot.append((fake_input, "")) | |
else: | |
chatbot.append((inputs, "")) | |
if fake_input is not None: | |
user_token_count = self.count_token(fake_input) | |
else: | |
user_token_count = self.count_token(inputs) | |
self.all_token_counts.append(user_token_count) | |
ai_reply, total_token_count = self.get_answer_at_once() | |
self.history.append(construct_assistant(ai_reply)) | |
if fake_input is not None: | |
self.history[-2] = construct_user(fake_input) | |
chatbot[-1] = (chatbot[-1][0], ai_reply + display_append) | |
self.all_token_counts[-1] += count_token(construct_assistant(ai_reply)) | |
status_text = self.token_message() | |
return chatbot, status_text | |
def handle_file_upload(self, files, chatbot, language): | |
"""if the model accepts modal input, implement this function""" | |
status = gr.Markdown.update() | |
if files: | |
construct_index(self.api_key, files=files) | |
status = i18n("索引构建完成") | |
return gr.Files.update(), chatbot, status | |
def prepare_inputs( | |
self, real_inputs, use_websearch, | |
files, reply_language, chatbot, | |
load_from_cache_if_possible=True, | |
): | |
display_append = [] | |
limited_context = False | |
if type(real_inputs) == list: | |
fake_inputs = real_inputs[0]["text"] | |
else: | |
fake_inputs = real_inputs | |
if files: | |
from langchain.vectorstores.base import VectorStoreRetriever | |
from langchain.retrievers import BM25Retriever, EnsembleRetriever | |
limited_context = True | |
msg = "加载索引中……" | |
logger.info(msg) | |
index, documents = construct_index( | |
self.api_key, | |
files=files, | |
load_from_cache_if_possible=load_from_cache_if_possible, | |
) | |
assert index is not None, "获取索引失败" | |
msg = "索引获取成功,生成回答中……" | |
logger.info(msg) | |
file_text = " ".join([d.page_content for d in documents]) | |
file_text_token_limit = self.token_upper_limit / 2 # 文档的token上限为模型token上限的一半 | |
if self.count_token(file_text) > file_text_token_limit: | |
# 文档token数超限使用检索匹配,否则用知识库文件的全部数据做rag | |
with retrieve_proxy(): | |
if local_embedding: | |
k = 3 | |
score_threshold = 0.4 | |
vec_retriever = VectorStoreRetriever( | |
vectorstore=index, | |
search_type="similarity_score_threshold", | |
search_kwargs={"k": k, "score_threshold": score_threshold} | |
) | |
bm25_retriever = BM25Retriever.from_documents( | |
documents, | |
preprocess_func=chinese_preprocessing_func | |
) | |
bm25_retriever.k = k | |
retriever = EnsembleRetriever( | |
retrievers=[bm25_retriever, vec_retriever], | |
weights=[0.5, 0.5], | |
) | |
else: | |
k = 5 | |
retriever = VectorStoreRetriever( | |
vectorstore=index, | |
search_type="similarity", | |
search_kwargs={"k": k} | |
) | |
try: | |
relevant_documents = retriever.get_relevant_documents(fake_inputs) | |
except: | |
return self.prepare_inputs( | |
fake_inputs, | |
use_websearch, | |
files, | |
reply_language, | |
chatbot, | |
load_from_cache_if_possible=False, | |
) | |
else: | |
relevant_documents = documents | |
reference_results = [ | |
[d.page_content.strip("�"), os.path.basename(d.metadata["source"])] | |
for d in relevant_documents | |
] | |
reference_results = add_source_numbers(reference_results) | |
display_append = add_details(reference_results) | |
display_append = "\n\n" + "".join(display_append) | |
if type(real_inputs) == list: | |
real_inputs[0]["text"] = ( | |
replace_today(PROMPT_TEMPLATE) | |
.replace("{query_str}", fake_inputs) | |
.replace("{context_str}", "\n\n".join(reference_results)) | |
.replace("{reply_language}", reply_language) | |
) | |
else: | |
real_inputs = ( | |
replace_today(PROMPT_TEMPLATE) | |
.replace("{query_str}", real_inputs) | |
.replace("{context_str}", "\n\n".join(reference_results)) | |
.replace("{reply_language}", reply_language) | |
) | |
elif use_websearch: | |
if websearch_engine == "google": | |
search_results = search_with_google(fake_inputs, google_search_api_key, google_search_cx) | |
elif websearch_engine == "bing": | |
search_results = search_with_bing(fake_inputs, bing_search_api_key) | |
elif websearch_engine == "searchapi": | |
search_results = search_with_searchapi(fake_inputs, searchapi_api_key) | |
elif websearch_engine == "serper": | |
search_results = search_with_serper(fake_inputs, serper_search_api_key) | |
else: | |
search_results = search_with_duckduckgo(fake_inputs) | |
reference_results = [] | |
for idx, result in enumerate(search_results): | |
logger.debug(f"搜索结果{idx + 1}:{result}") | |
reference_results.append([result["snippet"], result["url"]]) | |
display_append.append( | |
f"<a href=\"{result['url']}\" target=\"_blank\">{idx + 1}. {result['name']}</a>" | |
) | |
reference_results = add_source_numbers(reference_results) | |
display_append = ( | |
'<div class = "source-a">' + "".join(display_append) + "</div>" | |
) | |
if type(real_inputs) == list: | |
real_inputs[0]["text"] = ( | |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE) | |
.replace("{query}", fake_inputs) | |
.replace("{web_results}", "\n\n".join(reference_results)) | |
.replace("{reply_language}", reply_language) | |
) | |
else: | |
real_inputs = ( | |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE) | |
.replace("{query}", fake_inputs) | |
.replace("{web_results}", "\n\n".join(reference_results)) | |
.replace("{reply_language}", reply_language) | |
) | |
else: | |
display_append = "" | |
return limited_context, fake_inputs, display_append, real_inputs, chatbot | |
def predict( | |
self, | |
inputs, | |
chatbot, | |
stream=False, | |
use_websearch=False, | |
files=None, | |
reply_language="中文", | |
should_check_token_count=True, | |
): | |
status_text = "开始生成回答……" | |
if type(inputs) == list: | |
logger.info(f"用户{self.user_name}的输入为:{inputs[0]['text']}") | |
else: | |
logger.info(f"用户{self.user_name}的输入为:{inputs}") | |
if should_check_token_count: | |
if type(inputs) == list: | |
yield chatbot + [(inputs[0]["text"], "")], status_text | |
else: | |
yield chatbot + [(inputs, "")], status_text | |
if reply_language == "跟随问题语言(不稳定)": | |
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch." | |
limited_context, fake_inputs, display_append, inputs, chatbot = self.prepare_inputs( | |
real_inputs=inputs, | |
use_websearch=use_websearch, | |
files=files, | |
reply_language=reply_language, | |
chatbot=chatbot | |
) | |
yield chatbot + [(fake_inputs, "")], status_text | |
if ( | |
self.need_api_key and | |
self.api_key is None | |
and not shared.state.multi_api_key | |
): | |
status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG | |
logger.info(status_text) | |
chatbot.append((inputs, "")) | |
if len(self.history) == 0: | |
self.history.append(construct_user(inputs)) | |
self.history.append("") | |
self.all_token_counts.append(0) | |
else: | |
self.history[-2] = construct_user(inputs) | |
yield chatbot + [(inputs, "")], status_text | |
return | |
elif len(inputs.strip()) == 0: | |
status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG | |
logger.info(status_text) | |
yield chatbot + [(inputs, "")], status_text | |
return | |
if self.single_turn: | |
self.history = [] | |
self.all_token_counts = [] | |
if type(inputs) == list: | |
self.history.append(inputs) | |
else: | |
self.history.append(construct_user(inputs)) | |
try: | |
if stream: | |
logger.debug("使用流式传输") | |
iter = self.stream_next_chatbot( | |
inputs, | |
chatbot, | |
fake_input=fake_inputs, | |
display_append=display_append, | |
) | |
for chatbot, status_text in iter: | |
yield chatbot, status_text | |
else: | |
logger.debug("不使用流式传输") | |
chatbot, status_text = self.next_chatbot_at_once( | |
inputs, | |
chatbot, | |
fake_input=fake_inputs, | |
display_append=display_append, | |
) | |
yield chatbot, status_text | |
except Exception as e: | |
traceback.print_exc() | |
status_text = STANDARD_ERROR_MSG + str(e) | |
yield chatbot, status_text | |
if len(self.history) > 1 and self.history[-1]["content"] != inputs: | |
logger.info(f"回答为:{self.history[-1]['content']}") | |
if limited_context: | |
self.history = [] | |
self.all_token_counts = [] | |
max_token = self.token_upper_limit - TOKEN_OFFSET | |
if sum(self.all_token_counts) > max_token and len(self.history) > 2 and should_check_token_count: | |
count = 0 | |
while ( | |
sum(self.all_token_counts) | |
> self.token_upper_limit * REDUCE_TOKEN_FACTOR | |
and sum(self.all_token_counts) > 0 and len(self.history) > 0 | |
): | |
count += 1 | |
del self.all_token_counts[:1] | |
del self.history[:2] | |
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话" | |
logger.info(status_text) | |
yield chatbot, status_text | |
def retry( | |
self, | |
chatbot, | |
stream=False, | |
use_websearch=False, | |
files=None, | |
reply_language="中文", | |
): | |
logger.debug("重试中……") | |
if len(self.history) > 1: | |
inputs = self.history[-2]["content"] | |
del self.history[-2:] | |
if len(self.all_token_counts) > 0: | |
self.all_token_counts.pop() | |
elif len(chatbot) > 0: | |
inputs = chatbot[-1][0] | |
if '<div class="user-message">' in inputs: | |
inputs = inputs.split('<div class="user-message">')[1] | |
inputs = inputs.split("</div>")[0] | |
elif len(self.history) == 1: | |
inputs = self.history[-1]["content"] | |
del self.history[-1] | |
else: | |
yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的" | |
return | |
iter = self.predict( | |
inputs, | |
chatbot, | |
stream=stream, | |
use_websearch=use_websearch, | |
files=files, | |
reply_language=reply_language, | |
) | |
for x in iter: | |
yield x | |
logger.debug("重试完毕") | |
def interrupt(self): | |
self.interrupted = True | |
def recover(self): | |
self.interrupted = False | |
def set_token_upper_limit(self, new_upper_limit): | |
self.token_upper_limit = new_upper_limit | |
logger.info(f"token上限设置为{new_upper_limit}") | |
self.auto_save() | |
def set_temperature(self, new_temperature): | |
self.temperature = new_temperature | |
self.auto_save() | |
def set_top_p(self, new_top_p): | |
self.top_p = new_top_p | |
self.auto_save() | |
def set_n_choices(self, new_n_choices): | |
self.n_choices = new_n_choices | |
self.auto_save() | |
def set_stop_sequence(self, new_stop_sequence: str): | |
new_stop_sequence = new_stop_sequence.split(",") | |
self.stop_sequence = new_stop_sequence | |
self.auto_save() | |
def set_max_tokens(self, new_max_tokens): | |
self.max_generation_token = new_max_tokens | |
self.auto_save() | |
def set_presence_penalty(self, new_presence_penalty): | |
self.presence_penalty = new_presence_penalty | |
self.auto_save() | |
def set_frequency_penalty(self, new_frequency_penalty): | |
self.frequency_penalty = new_frequency_penalty | |
self.auto_save() | |
def set_logit_bias(self, logit_bias): | |
self.logit_bias = logit_bias | |
self.auto_save() | |
def encoded_logit_bias(self): | |
if self.logit_bias is None: | |
return {} | |
logit_bias = self.logit_bias.split() | |
bias_map = {} | |
encoding = tiktoken.get_encoding("cl100k_base") | |
for line in logit_bias: | |
word, bias_amount = line.split(":") | |
if word: | |
for token in encoding.encode(word): | |
bias_map[token] = float(bias_amount) | |
return bias_map | |
def set_user_identifier(self, new_user_identifier): | |
self.user_identifier = new_user_identifier | |
self.auto_save() | |
def set_system_prompt(self, new_system_prompt): | |
self.system_prompt = new_system_prompt | |
self.auto_save() | |
def set_key(self, new_access_key): | |
self.api_key = new_access_key.strip() | |
msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key) | |
logger.info(msg) | |
return self.api_key, msg | |
def set_single_turn(self, new_single_turn): | |
self.single_turn = new_single_turn | |
self.auto_save() | |
def reset(self, remain_system_prompt=False): | |
self.history = [] | |
self.all_token_counts = [] | |
self.interrupted = False | |
self.history_file_path = new_auto_history_filename(self.user_name) | |
history_name = self.history_file_path[:-5] | |
choices = get_history_names(self.user_name) | |
if history_name not in choices: | |
choices.insert(0, history_name) | |
system_prompt = self.system_prompt if remain_system_prompt else "" | |
self.single_turn = self.default_single_turn | |
self.temperature = self.default_temperature | |
self.top_p = self.default_top_p | |
self.n_choices = self.default_n_choices | |
self.stop_sequence = self.default_stop_sequence | |
self.max_generation_token = self.default_max_generation_token | |
self.presence_penalty = self.default_presence_penalty | |
self.frequency_penalty = self.default_frequency_penalty | |
self.logit_bias = self.default_logit_bias | |
self.user_identifier = self.default_user_identifier | |
return ( | |
[], | |
self.token_message([0]), | |
gr.Radio.update(choices=choices, value=history_name), | |
system_prompt, | |
self.single_turn, | |
self.temperature, | |
self.top_p, | |
self.n_choices, | |
self.stop_sequence, | |
self.token_upper_limit, | |
self.max_generation_token, | |
self.presence_penalty, | |
self.frequency_penalty, | |
self.logit_bias, | |
self.user_identifier, | |
) | |
def delete_first_conversation(self): | |
if self.history: | |
del self.history[:2] | |
del self.all_token_counts[:1] | |
return self.token_message() | |
def delete_last_conversation(self, chatbot): | |
if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]: | |
msg = "由于包含报错信息,只删除chatbot记录" | |
chatbot = chatbot[:-1] | |
return chatbot, self.history | |
if len(self.history) > 0: | |
self.history = self.history[:-2] | |
if len(chatbot) > 0: | |
msg = "删除了一组chatbot对话" | |
chatbot = chatbot[:-1] | |
if len(self.all_token_counts) > 0: | |
msg = "删除了一组对话的token计数记录" | |
self.all_token_counts.pop() | |
msg = "删除了一组对话" | |
self.chatbot = chatbot | |
self.auto_save(chatbot) | |
return chatbot, msg | |
def token_message(self, token_lst=None): | |
if token_lst is None: | |
token_lst = self.all_token_counts | |
token_sum = 0 | |
for i in range(len(token_lst)): | |
token_sum += sum(token_lst[: i + 1]) | |
return ( | |
i18n("Token 计数: ") | |
+ f"{sum(token_lst)}" | |
+ i18n(",本次对话累计消耗了 ") | |
+ f"{token_sum} tokens" | |
) | |
def rename_chat_history(self, filename, chatbot): | |
if filename == "": | |
return gr.update() | |
if not filename.endswith(".json"): | |
filename += ".json" | |
self.delete_chat_history(self.history_file_path) | |
# 命名重复检测 | |
repeat_file_index = 2 | |
full_path = os.path.join(HISTORY_DIR, self.user_name, filename) | |
while os.path.exists(full_path): | |
full_path = os.path.join( | |
HISTORY_DIR, self.user_name, f"{repeat_file_index}_{filename}" | |
) | |
repeat_file_index += 1 | |
filename = os.path.basename(full_path) | |
self.history_file_path = filename | |
save_file(filename, self, chatbot) | |
return init_history_list(self.user_name) | |
def auto_name_chat_history( | |
self, name_chat_method, user_question, chatbot, single_turn_checkbox | |
): | |
if len(self.history) == 2 and not single_turn_checkbox: | |
user_question = self.history[0]["content"] | |
if type(user_question) == list: | |
user_question = user_question[0]["text"] | |
filename = replace_special_symbols(user_question)[:16] + ".json" | |
return self.rename_chat_history(filename, chatbot) | |
else: | |
return gr.update() | |
def auto_save(self, chatbot=None): | |
if chatbot is not None: | |
save_file(self.history_file_path, self, chatbot) | |
def export_markdown(self, filename, chatbot): | |
if filename == "": | |
return | |
if not filename.endswith(".md"): | |
filename += ".md" | |
save_file(filename, self, chatbot) | |
def load_chat_history(self, new_history_file_path=None): | |
logger.debug(f"{self.user_name} 加载对话历史中……") | |
if new_history_file_path is not None: | |
if type(new_history_file_path) != str: | |
# copy file from new_history_file_path.name to os.path.join(HISTORY_DIR, self.user_name) | |
new_history_file_path = new_history_file_path.name | |
shutil.copyfile( | |
new_history_file_path, | |
os.path.join( | |
HISTORY_DIR, | |
self.user_name, | |
os.path.basename(new_history_file_path), | |
), | |
) | |
self.history_file_path = os.path.basename(new_history_file_path) | |
else: | |
self.history_file_path = new_history_file_path | |
try: | |
if self.history_file_path == os.path.basename(self.history_file_path): | |
history_file_path = os.path.join( | |
HISTORY_DIR, self.user_name, self.history_file_path | |
) | |
else: | |
history_file_path = self.history_file_path | |
if not self.history_file_path.endswith(".json"): | |
history_file_path += ".json" | |
saved_json = {} | |
if os.path.exists(history_file_path): | |
with open(history_file_path, "r", encoding="utf-8") as f: | |
saved_json = json.load(f) | |
try: | |
if type(saved_json["history"][0]) == str: | |
logger.info("历史记录格式为旧版,正在转换……") | |
new_history = [] | |
for index, item in enumerate(saved_json["history"]): | |
if index % 2 == 0: | |
new_history.append(construct_user(item)) | |
else: | |
new_history.append(construct_assistant(item)) | |
saved_json["history"] = new_history | |
logger.info(new_history) | |
except: | |
pass | |
if len(saved_json["chatbot"]) < len(saved_json["history"]) // 2: | |
logger.info("Trimming corrupted history...") | |
saved_json["history"] = saved_json["history"][-len(saved_json["chatbot"]):] | |
logger.info(f"Trimmed history: {saved_json['history']}") | |
logger.debug(f"{self.user_name} 加载对话历史完毕") | |
self.history = saved_json["history"] | |
self.single_turn = saved_json.get("single_turn", self.single_turn) | |
self.temperature = saved_json.get("temperature", self.temperature) | |
self.top_p = saved_json.get("top_p", self.top_p) | |
self.n_choices = saved_json.get("n_choices", self.n_choices) | |
self.stop_sequence = list(saved_json.get("stop_sequence", self.stop_sequence)) | |
self.token_upper_limit = saved_json.get( | |
"token_upper_limit", self.token_upper_limit | |
) | |
self.max_generation_token = saved_json.get( | |
"max_generation_token", self.max_generation_token | |
) | |
self.presence_penalty = saved_json.get( | |
"presence_penalty", self.presence_penalty | |
) | |
self.frequency_penalty = saved_json.get( | |
"frequency_penalty", self.frequency_penalty | |
) | |
self.logit_bias = saved_json.get("logit_bias", self.logit_bias) | |
self.user_identifier = saved_json.get("user_identifier", self.user_name) | |
self.metadata = saved_json.get("metadata", self.metadata) | |
self.chatbot = saved_json["chatbot"] | |
return ( | |
os.path.basename(self.history_file_path)[:-5], | |
saved_json["system"], | |
saved_json["chatbot"], | |
self.single_turn, | |
self.temperature, | |
self.top_p, | |
self.n_choices, | |
",".join(self.stop_sequence), | |
self.token_upper_limit, | |
self.max_generation_token, | |
self.presence_penalty, | |
self.frequency_penalty, | |
self.logit_bias, | |
self.user_identifier, | |
) | |
except: | |
# 没有对话历史或者对话历史解析失败 | |
logger.info(f"没有找到对话历史记录 {self.history_file_path}") | |
self.reset() | |
return ( | |
os.path.basename(self.history_file_path), | |
"", | |
[], | |
self.single_turn, | |
self.temperature, | |
self.top_p, | |
self.n_choices, | |
",".join(self.stop_sequence), | |
self.token_upper_limit, | |
self.max_generation_token, | |
self.presence_penalty, | |
self.frequency_penalty, | |
self.logit_bias, | |
self.user_identifier, | |
) | |
def delete_chat_history(self, filename): | |
if filename == "CANCELED": | |
return gr.update(), gr.update(), gr.update() | |
if filename == "": | |
return i18n("你没有选择任何对话历史"), gr.update(), gr.update() | |
if filename and not filename.endswith(".json"): | |
filename += ".json" | |
if filename == os.path.basename(filename): | |
history_file_path = os.path.join(HISTORY_DIR, self.user_name, filename) | |
else: | |
history_file_path = filename | |
md_history_file_path = history_file_path[:-5] + ".md" | |
try: | |
os.remove(history_file_path) | |
os.remove(md_history_file_path) | |
return i18n("删除对话历史成功"), get_history_list(self.user_name), [] | |
except: | |
logger.info(f"删除对话历史失败 {history_file_path}") | |
return ( | |
i18n("对话历史") + filename + i18n("已经被删除啦"), | |
get_history_list(self.user_name), | |
[], | |
) | |
def auto_load(self): | |
self.history_file_path = new_auto_history_filename(self.user_name) | |
return self.load_chat_history() | |
def like(self): | |
"""like the last response, implement if needed""" | |
return gr.update() | |
def dislike(self): | |
"""dislike the last response, implement if needed""" | |
return gr.update() | |
def deinitialize(self): | |
"""deinitialize the model, implement if needed""" | |
pass | |