Spaces:
Running
Running
attemptint to parse answers
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from haystack.utils import fetch_archive_from_http, clean_wiki_text, convert_files_to_docs
|
|
|
3 |
from haystack.document_stores import InMemoryDocumentStore
|
4 |
from haystack.pipelines import ExtractiveQAPipeline
|
5 |
from haystack.nodes import FARMReader, TfidfRetriever
|
@@ -27,9 +28,9 @@ load_and_write_data()
|
|
27 |
|
28 |
def ask_question(question):
|
29 |
prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}})
|
30 |
-
st.write(prediction['answers'][0])
|
31 |
-
st.write(prediction['answers'][1])
|
32 |
-
st.write(prediction['answers'][2])
|
33 |
|
34 |
if question:
|
35 |
ask_question(question)
|
|
|
1 |
import streamlit as st
|
2 |
from haystack.utils import fetch_archive_from_http, clean_wiki_text, convert_files_to_docs
|
3 |
+
from haystack.schema import Answer
|
4 |
from haystack.document_stores import InMemoryDocumentStore
|
5 |
from haystack.pipelines import ExtractiveQAPipeline
|
6 |
from haystack.nodes import FARMReader, TfidfRetriever
|
|
|
28 |
|
29 |
def ask_question(question):
|
30 |
prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}})
|
31 |
+
st.write(Answer(prediction['answers'][0]).to_dict())
|
32 |
+
st.write(Answer(prediction['answers'][1]).to_dict())
|
33 |
+
st.write(Answer(prediction['answers'][2]).to_dict())
|
34 |
|
35 |
if question:
|
36 |
ask_question(question)
|