import streamlit as st from haystack.document_stores import InMemoryDocumentStore from haystack.nodes import TransformersSummarizer, PreProcessor, PDFToTextConverter, TfidfRetriever from haystack.schema import Document import logging import base64 @st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},allow_output_mutation=True) def start_haystack(): document_store = InMemoryDocumentStore() preprocessor = PreProcessor( clean_empty_lines=True, clean_whitespace=True, clean_header_footer=True, split_by="word", split_length=200, split_respect_sentence_boundary=True, ) summarizer = TransformersSummarizer(model_name_or_path="google/pegasus-newsroom") return document_store, summarizer, preprocessor def pdf_to_document_store(pdf_files): converter = PDFToTextConverter(remove_numeric_tables=True, valid_languages=["en"]) documents = [] for pdf in pdf_files: with open("temp-path.pdf", 'wb') as temp_file: base64_pdf = base64.b64encode(pdf.read()).decode('utf-8') temp_file.write(base64.b64decode(base64_pdf)) doc = converter.convert(file_path="temp-path.pdf", meta=None)[0] preprocessed_doc=preprocessor.process([doc]) documents.append(preprocessed_doc) temp_file.close() document_store.write_documents(documents) st.write('Document count: ', document_store.get_document_count()) def summarize(files): pdf_to_document_store(files) summary = summarizer.predict(documents=document_store.get_all_documents(), generate_single_summary=False) st.write(summary) document_store, summarizer, preprocessor = start_haystack() uploaded_files = st.file_uploader("Choose PDF files", accept_multiple_files=True) if uploaded_files is not None: st.write(len(uploaded_files)) if st.button('Summarize Documents'): summarize(uploaded_files) if st.button('Calculate num of docs'): st.write(document_store.get_document_count()) if st.button('Clear DocumentStore'): document_store.delete_all_documents()