import streamlit as st from haystack.document_stores import InMemoryDocumentStore from haystack.nodes import TransformersSummarizer, PreProcessor, PDFToTextConverter, Crawler from haystack.schema import Document import logging import base64 from PIL import Image import validators @st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},allow_output_mutation=True) def start_haystack(): document_store = InMemoryDocumentStore() preprocessor = PreProcessor( clean_empty_lines=True, clean_whitespace=True, clean_header_footer=True, split_by="word", split_length=200, split_respect_sentence_boundary=True, ) summarizer = TransformersSummarizer(model_name_or_path="facebook/bart-large-cnn") return document_store, summarizer, preprocessor def pdf_to_document_store(pdf_file): document_store.delete_documents() converter = PDFToTextConverter(remove_numeric_tables=True, valid_languages=["en"]) with open("temp-path.pdf", 'wb') as temp_file: base64_pdf = base64.b64encode(pdf_file.read()).decode('utf-8') temp_file.write(base64.b64decode(base64_pdf)) doc = converter.convert(file_path="temp-path.pdf", meta=None) preprocessed_docs=preprocessor.process(doc) document_store.write_documents(preprocessed_docs) temp_file.close() def summarize(content): pdf_to_document_store(content) summaries = summarizer.predict(documents=document_store.get_all_documents(), generate_single_summary=True) return summaries def set_state_if_absent(key, value): if key not in st.session_state: st.session_state[key] = value set_state_if_absent("summaries", None) document_store, summarizer, preprocessor = start_haystack() st.title('TL;DR with Haystack') image = Image.open('header-image.png') st.image(image) st.markdown( """ This Summarization demo uses a [Haystack TransformerSummarizer node](https://haystack.deepset.ai/pipeline_nodes/summarizer). You can upload a PDF file, which will be converted to text with the [Haystack PDFtoTextConverter](https://haystack.deepset.ai/reference/file-converters#pdftotextconverter). In this demo, we produce 1 summary for the whole file you upload. So, the TransformerSummarizer treats the whole thing as one string, which means along with the model limitations, PDFs that have a lot of unneeded text at the beginning produce poor results. For best results, upload a document that has minimal intro and tables at the top. """, unsafe_allow_html=True) uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False) if uploaded_file is not None : if st.button('Summarize Document'): with st.spinner("📚    Please wait while we produce a summary..."): try: st.session_state.summaries = summarize(uploaded_file) except Exception as e: logging.exception(e) if st.session_state.summaries: st.write('## Summary') for count, summary in enumerate(st.session_state.summaries): st.write(summary.content)