Update for inference
Browse files- app.py +0 -84
- app_inference.py +89 -128
- app_training.py +0 -135
- app_upload.py +0 -106
- trainer.py +0 -166
- uploader.py +0 -44
- utils.py +0 -65
app.py
DELETED
@@ -1,84 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import os
|
6 |
-
from subprocess import getoutput
|
7 |
-
|
8 |
-
import gradio as gr
|
9 |
-
import torch
|
10 |
-
|
11 |
-
from app_inference import create_inference_demo
|
12 |
-
from app_training import create_training_demo
|
13 |
-
from app_upload import create_upload_demo
|
14 |
-
from inference import InferencePipeline
|
15 |
-
from trainer import Trainer
|
16 |
-
|
17 |
-
TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/) UI'
|
18 |
-
|
19 |
-
ORIGINAL_SPACE_ID = 'Tune-A-Video-library/Tune-A-Video-Training-UI'
|
20 |
-
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
21 |
-
GPU_DATA = getoutput('nvidia-smi')
|
22 |
-
SHARED_UI_WARNING = f'''## Attention - Training doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
|
23 |
-
|
24 |
-
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
25 |
-
'''
|
26 |
-
|
27 |
-
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
|
28 |
-
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
29 |
-
else:
|
30 |
-
SETTINGS = 'Settings'
|
31 |
-
|
32 |
-
INVALID_GPU_WARNING = f'''## Attention - the specified GPU is invalid. Training may not work. Make sure you have selected a `T4 GPU` for this task.'''
|
33 |
-
|
34 |
-
CUDA_NOT_AVAILABLE_WARNING = f'''## Attention - Running on CPU.
|
35 |
-
<center>
|
36 |
-
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
37 |
-
You can use "T4 small/medium" to run this demo.
|
38 |
-
</center>
|
39 |
-
'''
|
40 |
-
|
41 |
-
HF_TOKEN_NOT_SPECIFIED_WARNING = f'''The environment variable `HF_TOKEN` is not specified. Feel free to specify your Hugging Face token with write permission if you don't want to manually provide it for every run.
|
42 |
-
<center>
|
43 |
-
You can check and create your Hugging Face tokens <a href="https://huggingface.co/settings/tokens" target="_blank">here</a>.
|
44 |
-
You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab.
|
45 |
-
</center>
|
46 |
-
'''
|
47 |
-
|
48 |
-
HF_TOKEN = os.getenv('HF_TOKEN')
|
49 |
-
|
50 |
-
|
51 |
-
def show_warning(warning_text: str) -> gr.Blocks:
|
52 |
-
with gr.Blocks() as demo:
|
53 |
-
with gr.Box():
|
54 |
-
gr.Markdown(warning_text)
|
55 |
-
return demo
|
56 |
-
|
57 |
-
|
58 |
-
pipe = InferencePipeline(HF_TOKEN)
|
59 |
-
trainer = Trainer(HF_TOKEN)
|
60 |
-
|
61 |
-
with gr.Blocks(css='style.css') as demo:
|
62 |
-
if SPACE_ID == ORIGINAL_SPACE_ID:
|
63 |
-
show_warning(SHARED_UI_WARNING)
|
64 |
-
elif not torch.cuda.is_available():
|
65 |
-
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
66 |
-
elif (not 'T4' in GPU_DATA):
|
67 |
-
show_warning(INVALID_GPU_WARNING)
|
68 |
-
|
69 |
-
gr.Markdown(TITLE)
|
70 |
-
with gr.Tabs():
|
71 |
-
with gr.TabItem('Train'):
|
72 |
-
create_training_demo(trainer, pipe)
|
73 |
-
with gr.TabItem('Run'):
|
74 |
-
create_inference_demo(pipe, HF_TOKEN)
|
75 |
-
with gr.TabItem('Upload'):
|
76 |
-
gr.Markdown('''
|
77 |
-
- You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
|
78 |
-
''')
|
79 |
-
create_upload_demo(HF_TOKEN)
|
80 |
-
|
81 |
-
if not HF_TOKEN:
|
82 |
-
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
|
83 |
-
|
84 |
-
demo.queue(max_size=1).launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_inference.py
CHANGED
@@ -2,19 +2,13 @@
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
-
import
|
6 |
|
7 |
import gradio as gr
|
8 |
from huggingface_hub import HfApi
|
9 |
|
10 |
-
from constants import MODEL_LIBRARY_ORG_NAME
|
11 |
from inference import InferencePipeline
|
12 |
-
from utils import find_exp_dirs
|
13 |
-
|
14 |
-
|
15 |
-
class ModelSource(enum.Enum):
|
16 |
-
HUB_LIB = UploadTarget.MODEL_LIBRARY.value
|
17 |
-
LOCAL = 'Local'
|
18 |
|
19 |
|
20 |
class InferenceUtil:
|
@@ -30,20 +24,6 @@ class InferenceUtil:
|
|
30 |
return gr.update(choices=choices,
|
31 |
value=choices[0] if choices else None)
|
32 |
|
33 |
-
@staticmethod
|
34 |
-
def load_local_model_list() -> dict:
|
35 |
-
choices = find_exp_dirs()
|
36 |
-
return gr.update(choices=choices,
|
37 |
-
value=choices[0] if choices else None)
|
38 |
-
|
39 |
-
def reload_model_list(self, model_source: str) -> dict:
|
40 |
-
if model_source == ModelSource.HUB_LIB.value:
|
41 |
-
return self.load_hub_model_list()
|
42 |
-
elif model_source == ModelSource.LOCAL.value:
|
43 |
-
return self.load_local_model_list()
|
44 |
-
else:
|
45 |
-
raise ValueError
|
46 |
-
|
47 |
def load_model_info(self, model_id: str) -> tuple[str, str]:
|
48 |
try:
|
49 |
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
@@ -53,118 +33,99 @@ class InferenceUtil:
|
|
53 |
training_prompt = getattr(card.data, 'training_prompt', '')
|
54 |
return base_model, training_prompt
|
55 |
|
56 |
-
def reload_model_list_and_update_model_info(
|
57 |
-
|
58 |
-
model_list_update = self.reload_model_list(model_source)
|
59 |
model_list = model_list_update['choices']
|
60 |
model_info = self.load_model_info(model_list[0] if model_list else '')
|
61 |
return model_list_update, *model_info
|
62 |
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
model_source.change(fn=app.reload_model_list_and_update_model_info,
|
131 |
-
inputs=model_source,
|
132 |
-
outputs=[
|
133 |
-
model_id,
|
134 |
-
base_model_used_for_training,
|
135 |
-
prompt_used_for_training,
|
136 |
-
])
|
137 |
-
reload_button.click(fn=app.reload_model_list_and_update_model_info,
|
138 |
-
inputs=model_source,
|
139 |
-
outputs=[
|
140 |
-
model_id,
|
141 |
-
base_model_used_for_training,
|
142 |
-
prompt_used_for_training,
|
143 |
-
])
|
144 |
-
model_id.change(fn=app.load_model_info,
|
145 |
-
inputs=model_id,
|
146 |
outputs=[
|
|
|
147 |
base_model_used_for_training,
|
148 |
prompt_used_for_training,
|
149 |
])
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
demo = create_inference_demo(pipe, hf_token)
|
170 |
-
demo.queue(max_size=10).launch(share=False)
|
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
+
import os
|
6 |
|
7 |
import gradio as gr
|
8 |
from huggingface_hub import HfApi
|
9 |
|
10 |
+
from constants import MODEL_LIBRARY_ORG_NAME
|
11 |
from inference import InferencePipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
class InferenceUtil:
|
|
|
24 |
return gr.update(choices=choices,
|
25 |
value=choices[0] if choices else None)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def load_model_info(self, model_id: str) -> tuple[str, str]:
|
28 |
try:
|
29 |
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
|
|
33 |
training_prompt = getattr(card.data, 'training_prompt', '')
|
34 |
return base_model, training_prompt
|
35 |
|
36 |
+
def reload_model_list_and_update_model_info(self) -> tuple[dict, str, str]:
|
37 |
+
model_list_update = self.load_hub_model_list()
|
|
|
38 |
model_list = model_list_update['choices']
|
39 |
model_info = self.load_model_info(model_list[0] if model_list else '')
|
40 |
return model_list_update, *model_info
|
41 |
|
42 |
|
43 |
+
TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/)'
|
44 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
45 |
+
pipe = InferencePipeline(HF_TOKEN)
|
46 |
+
app = InferenceUtil(HF_TOKEN)
|
47 |
+
|
48 |
+
with gr.Blocks(css='style.css') as demo:
|
49 |
+
gr.Markdown(TITLE)
|
50 |
+
|
51 |
+
with gr.Row():
|
52 |
+
with gr.Column():
|
53 |
+
with gr.Box():
|
54 |
+
reload_button = gr.Button('Reload Model List')
|
55 |
+
model_id = gr.Dropdown(label='Model ID',
|
56 |
+
choices=None,
|
57 |
+
value=None)
|
58 |
+
with gr.Accordion(
|
59 |
+
label=
|
60 |
+
'Model info (Base model and prompt used for training)',
|
61 |
+
open=False):
|
62 |
+
with gr.Row():
|
63 |
+
base_model_used_for_training = gr.Text(
|
64 |
+
label='Base model', interactive=False)
|
65 |
+
prompt_used_for_training = gr.Text(
|
66 |
+
label='Training prompt', interactive=False)
|
67 |
+
prompt = gr.Textbox(label='Prompt',
|
68 |
+
max_lines=1,
|
69 |
+
placeholder='Example: "A panda is surfing"')
|
70 |
+
video_length = gr.Slider(label='Video length',
|
71 |
+
minimum=4,
|
72 |
+
maximum=12,
|
73 |
+
step=1,
|
74 |
+
value=8)
|
75 |
+
fps = gr.Slider(label='FPS',
|
76 |
+
minimum=1,
|
77 |
+
maximum=12,
|
78 |
+
step=1,
|
79 |
+
value=1)
|
80 |
+
seed = gr.Slider(label='Seed',
|
81 |
+
minimum=0,
|
82 |
+
maximum=100000,
|
83 |
+
step=1,
|
84 |
+
value=0)
|
85 |
+
with gr.Accordion('Other Parameters', open=False):
|
86 |
+
num_steps = gr.Slider(label='Number of Steps',
|
87 |
+
minimum=0,
|
88 |
+
maximum=100,
|
89 |
+
step=1,
|
90 |
+
value=50)
|
91 |
+
guidance_scale = gr.Slider(label='CFG Scale',
|
92 |
+
minimum=0,
|
93 |
+
maximum=50,
|
94 |
+
step=0.1,
|
95 |
+
value=7.5)
|
96 |
+
|
97 |
+
run_button = gr.Button('Generate')
|
98 |
+
|
99 |
+
gr.Markdown('''
|
100 |
+
- It takes a few minutes to download model first.
|
101 |
+
- Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
|
102 |
+
''')
|
103 |
+
with gr.Column():
|
104 |
+
result = gr.Video(label='Result')
|
105 |
+
|
106 |
+
reload_button.click(fn=app.reload_model_list_and_update_model_info,
|
107 |
+
inputs=None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
outputs=[
|
109 |
+
model_id,
|
110 |
base_model_used_for_training,
|
111 |
prompt_used_for_training,
|
112 |
])
|
113 |
+
model_id.change(fn=app.load_model_info,
|
114 |
+
inputs=model_id,
|
115 |
+
outputs=[
|
116 |
+
base_model_used_for_training,
|
117 |
+
prompt_used_for_training,
|
118 |
+
])
|
119 |
+
inputs = [
|
120 |
+
model_id,
|
121 |
+
prompt,
|
122 |
+
video_length,
|
123 |
+
fps,
|
124 |
+
seed,
|
125 |
+
num_steps,
|
126 |
+
guidance_scale,
|
127 |
+
]
|
128 |
+
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
|
129 |
+
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
|
130 |
+
|
131 |
+
demo.queue().launch()
|
|
|
|
app_training.py
DELETED
@@ -1,135 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import os
|
6 |
-
|
7 |
-
import gradio as gr
|
8 |
-
|
9 |
-
from constants import MODEL_LIBRARY_ORG_NAME, SAMPLE_MODEL_REPO, UploadTarget
|
10 |
-
from inference import InferencePipeline
|
11 |
-
from trainer import Trainer
|
12 |
-
|
13 |
-
|
14 |
-
def create_training_demo(trainer: Trainer,
|
15 |
-
pipe: InferencePipeline | None = None) -> gr.Blocks:
|
16 |
-
hf_token = os.getenv('HF_TOKEN')
|
17 |
-
with gr.Blocks() as demo:
|
18 |
-
with gr.Row():
|
19 |
-
with gr.Column():
|
20 |
-
with gr.Box():
|
21 |
-
gr.Markdown('Training Data')
|
22 |
-
training_video = gr.File(label='Training video')
|
23 |
-
training_prompt = gr.Textbox(
|
24 |
-
label='Training prompt',
|
25 |
-
max_lines=1,
|
26 |
-
placeholder='A man is surfing')
|
27 |
-
gr.Markdown('''
|
28 |
-
- Upload a video and write a `Training Prompt` that describes the video.
|
29 |
-
''')
|
30 |
-
|
31 |
-
with gr.Column():
|
32 |
-
with gr.Box():
|
33 |
-
gr.Markdown('Training Parameters')
|
34 |
-
with gr.Row():
|
35 |
-
base_model = gr.Text(
|
36 |
-
label='Base Model',
|
37 |
-
value='CompVis/stable-diffusion-v1-4',
|
38 |
-
max_lines=1)
|
39 |
-
resolution = gr.Dropdown(choices=['512', '768'],
|
40 |
-
value='512',
|
41 |
-
label='Resolution',
|
42 |
-
visible=False)
|
43 |
-
|
44 |
-
input_token = gr.Text(label='Hugging Face Write Token',
|
45 |
-
placeholder='',
|
46 |
-
visible=False if hf_token else True)
|
47 |
-
with gr.Accordion('Advanced settings', open=False):
|
48 |
-
num_training_steps = gr.Number(
|
49 |
-
label='Number of Training Steps',
|
50 |
-
value=300,
|
51 |
-
precision=0)
|
52 |
-
learning_rate = gr.Number(label='Learning Rate',
|
53 |
-
value=0.000035)
|
54 |
-
gradient_accumulation = gr.Number(
|
55 |
-
label='Number of Gradient Accumulation',
|
56 |
-
value=1,
|
57 |
-
precision=0)
|
58 |
-
seed = gr.Slider(label='Seed',
|
59 |
-
minimum=0,
|
60 |
-
maximum=100000,
|
61 |
-
step=1,
|
62 |
-
randomize=True,
|
63 |
-
value=0)
|
64 |
-
fp16 = gr.Checkbox(label='FP16', value=True)
|
65 |
-
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam',
|
66 |
-
value=False)
|
67 |
-
checkpointing_steps = gr.Number(
|
68 |
-
label='Checkpointing Steps',
|
69 |
-
value=1000,
|
70 |
-
precision=0)
|
71 |
-
validation_epochs = gr.Number(
|
72 |
-
label='Validation Epochs', value=100, precision=0)
|
73 |
-
gr.Markdown('''
|
74 |
-
- The base model must be a Stable Diffusion model compatible with [diffusers](https://github.com/huggingface/diffusers) library.
|
75 |
-
- Expected time to train a model for 300 steps: ~20 minutes with T4
|
76 |
-
- You can check the training status by pressing the "Open logs" button if you are running this on your Space.
|
77 |
-
''')
|
78 |
-
|
79 |
-
with gr.Row():
|
80 |
-
with gr.Column():
|
81 |
-
gr.Markdown('Output Model')
|
82 |
-
output_model_name = gr.Text(label='Name of your model',
|
83 |
-
placeholder='The surfer man',
|
84 |
-
max_lines=1)
|
85 |
-
validation_prompt = gr.Text(
|
86 |
-
label='Validation Prompt',
|
87 |
-
placeholder=
|
88 |
-
'prompt to test the model, e.g: a dog is surfing')
|
89 |
-
with gr.Column():
|
90 |
-
gr.Markdown('Upload Settings')
|
91 |
-
with gr.Row():
|
92 |
-
upload_to_hub = gr.Checkbox(label='Upload model to Hub',
|
93 |
-
value=True)
|
94 |
-
use_private_repo = gr.Checkbox(label='Private', value=True)
|
95 |
-
delete_existing_repo = gr.Checkbox(
|
96 |
-
label='Delete existing repo of the same name',
|
97 |
-
value=False)
|
98 |
-
upload_to = gr.Radio(
|
99 |
-
label='Upload to',
|
100 |
-
choices=[_.value for _ in UploadTarget],
|
101 |
-
value=UploadTarget.MODEL_LIBRARY.value)
|
102 |
-
|
103 |
-
remove_gpu_after_training = gr.Checkbox(
|
104 |
-
label='Remove GPU after training',
|
105 |
-
value=False,
|
106 |
-
interactive=bool(os.getenv('SPACE_ID')),
|
107 |
-
visible=False)
|
108 |
-
run_button = gr.Button('Start Training')
|
109 |
-
|
110 |
-
with gr.Box():
|
111 |
-
gr.Markdown('Output message')
|
112 |
-
output_message = gr.Markdown()
|
113 |
-
|
114 |
-
if pipe is not None:
|
115 |
-
run_button.click(fn=pipe.clear)
|
116 |
-
run_button.click(
|
117 |
-
fn=trainer.run,
|
118 |
-
inputs=[
|
119 |
-
training_video, training_prompt, output_model_name,
|
120 |
-
delete_existing_repo, validation_prompt, base_model,
|
121 |
-
resolution, num_training_steps, learning_rate,
|
122 |
-
gradient_accumulation, seed, fp16, use_8bit_adam,
|
123 |
-
checkpointing_steps, validation_epochs, upload_to_hub,
|
124 |
-
use_private_repo, delete_existing_repo, upload_to,
|
125 |
-
remove_gpu_after_training, input_token
|
126 |
-
],
|
127 |
-
outputs=output_message)
|
128 |
-
return demo
|
129 |
-
|
130 |
-
|
131 |
-
if __name__ == '__main__':
|
132 |
-
hf_token = os.getenv('HF_TOKEN')
|
133 |
-
trainer = Trainer(hf_token)
|
134 |
-
demo = create_training_demo(trainer)
|
135 |
-
demo.queue(max_size=1).launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_upload.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import pathlib
|
6 |
-
|
7 |
-
import gradio as gr
|
8 |
-
import slugify
|
9 |
-
|
10 |
-
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
|
11 |
-
from uploader import Uploader
|
12 |
-
from utils import find_exp_dirs
|
13 |
-
|
14 |
-
|
15 |
-
class ModelUploader(Uploader):
|
16 |
-
def upload_model(
|
17 |
-
self,
|
18 |
-
folder_path: str,
|
19 |
-
repo_name: str,
|
20 |
-
upload_to: str,
|
21 |
-
private: bool,
|
22 |
-
delete_existing_repo: bool,
|
23 |
-
input_token: str | None = None,
|
24 |
-
) -> str:
|
25 |
-
if not folder_path:
|
26 |
-
raise ValueError
|
27 |
-
if not repo_name:
|
28 |
-
repo_name = pathlib.Path(folder_path).name
|
29 |
-
repo_name = slugify.slugify(repo_name)
|
30 |
-
|
31 |
-
if upload_to == UploadTarget.PERSONAL_PROFILE.value:
|
32 |
-
organization = ''
|
33 |
-
elif upload_to == UploadTarget.MODEL_LIBRARY.value:
|
34 |
-
organization = MODEL_LIBRARY_ORG_NAME
|
35 |
-
else:
|
36 |
-
raise ValueError
|
37 |
-
|
38 |
-
return self.upload(folder_path,
|
39 |
-
repo_name,
|
40 |
-
organization=organization,
|
41 |
-
private=private,
|
42 |
-
delete_existing_repo=delete_existing_repo,
|
43 |
-
input_token=input_token)
|
44 |
-
|
45 |
-
|
46 |
-
def load_local_model_list() -> dict:
|
47 |
-
choices = find_exp_dirs()
|
48 |
-
return gr.update(choices=choices, value=choices[0] if choices else None)
|
49 |
-
|
50 |
-
|
51 |
-
def create_upload_demo(hf_token: str | None) -> gr.Blocks:
|
52 |
-
uploader = ModelUploader(hf_token)
|
53 |
-
model_dirs = find_exp_dirs()
|
54 |
-
|
55 |
-
with gr.Blocks() as demo:
|
56 |
-
with gr.Box():
|
57 |
-
gr.Markdown('Local Models')
|
58 |
-
reload_button = gr.Button('Reload Model List')
|
59 |
-
model_dir = gr.Dropdown(
|
60 |
-
label='Model names',
|
61 |
-
choices=model_dirs,
|
62 |
-
value=model_dirs[0] if model_dirs else None)
|
63 |
-
with gr.Box():
|
64 |
-
gr.Markdown('Upload Settings')
|
65 |
-
with gr.Row():
|
66 |
-
use_private_repo = gr.Checkbox(label='Private', value=True)
|
67 |
-
delete_existing_repo = gr.Checkbox(
|
68 |
-
label='Delete existing repo of the same name', value=False)
|
69 |
-
upload_to = gr.Radio(label='Upload to',
|
70 |
-
choices=[_.value for _ in UploadTarget],
|
71 |
-
value=UploadTarget.MODEL_LIBRARY.value)
|
72 |
-
model_name = gr.Textbox(label='Model Name')
|
73 |
-
input_token = gr.Text(label='Hugging Face Write Token',
|
74 |
-
placeholder='',
|
75 |
-
visible=False if hf_token else True)
|
76 |
-
upload_button = gr.Button('Upload')
|
77 |
-
gr.Markdown(f'''
|
78 |
-
- You can upload your trained model to your personal profile (i.e. https://huggingface.co/{{your_username}}/{{model_name}}) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}).
|
79 |
-
''')
|
80 |
-
with gr.Box():
|
81 |
-
gr.Markdown('Output message')
|
82 |
-
output_message = gr.Markdown()
|
83 |
-
|
84 |
-
reload_button.click(fn=load_local_model_list,
|
85 |
-
inputs=None,
|
86 |
-
outputs=model_dir)
|
87 |
-
upload_button.click(fn=uploader.upload_model,
|
88 |
-
inputs=[
|
89 |
-
model_dir,
|
90 |
-
model_name,
|
91 |
-
upload_to,
|
92 |
-
use_private_repo,
|
93 |
-
delete_existing_repo,
|
94 |
-
input_token,
|
95 |
-
],
|
96 |
-
outputs=output_message)
|
97 |
-
|
98 |
-
return demo
|
99 |
-
|
100 |
-
|
101 |
-
if __name__ == '__main__':
|
102 |
-
import os
|
103 |
-
|
104 |
-
hf_token = os.getenv('HF_TOKEN')
|
105 |
-
demo = create_upload_demo(hf_token)
|
106 |
-
demo.queue(max_size=1).launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trainer.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
import datetime
|
4 |
-
import os
|
5 |
-
import pathlib
|
6 |
-
import shlex
|
7 |
-
import shutil
|
8 |
-
import subprocess
|
9 |
-
import sys
|
10 |
-
|
11 |
-
import gradio as gr
|
12 |
-
import slugify
|
13 |
-
import torch
|
14 |
-
from huggingface_hub import HfApi
|
15 |
-
from omegaconf import OmegaConf
|
16 |
-
|
17 |
-
from app_upload import ModelUploader
|
18 |
-
from utils import save_model_card
|
19 |
-
|
20 |
-
sys.path.append('Tune-A-Video')
|
21 |
-
|
22 |
-
URL_TO_JOIN_MODEL_LIBRARY_ORG = 'https://huggingface.co/organizations/Tune-A-Video-library/share/YjTcaNJmKyeHFpMBioHhzBcTzCYddVErEk'
|
23 |
-
ORIGINAL_SPACE_ID = 'Tune-A-Video-library/Tune-A-Video-Training-UI'
|
24 |
-
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
25 |
-
|
26 |
-
|
27 |
-
class Trainer:
|
28 |
-
def __init__(self, hf_token: str | None = None):
|
29 |
-
self.hf_token = hf_token
|
30 |
-
self.model_uploader = ModelUploader(hf_token)
|
31 |
-
|
32 |
-
self.checkpoint_dir = pathlib.Path('checkpoints')
|
33 |
-
self.checkpoint_dir.mkdir(exist_ok=True)
|
34 |
-
|
35 |
-
def download_base_model(self, base_model_id: str) -> str:
|
36 |
-
model_dir = self.checkpoint_dir / base_model_id
|
37 |
-
if not model_dir.exists():
|
38 |
-
org_name = base_model_id.split('/')[0]
|
39 |
-
org_dir = self.checkpoint_dir / org_name
|
40 |
-
org_dir.mkdir(exist_ok=True)
|
41 |
-
subprocess.run(shlex.split(
|
42 |
-
f'git clone https://huggingface.co/{base_model_id}'),
|
43 |
-
cwd=org_dir)
|
44 |
-
return model_dir.as_posix()
|
45 |
-
|
46 |
-
def join_model_library_org(self, token: str) -> None:
|
47 |
-
subprocess.run(
|
48 |
-
shlex.split(
|
49 |
-
f'curl -X POST -H "Authorization: Bearer {token}" -H "Content-Type: application/json" {URL_TO_JOIN_MODEL_LIBRARY_ORG}'
|
50 |
-
))
|
51 |
-
|
52 |
-
def run(
|
53 |
-
self,
|
54 |
-
training_video: str,
|
55 |
-
training_prompt: str,
|
56 |
-
output_model_name: str,
|
57 |
-
overwrite_existing_model: bool,
|
58 |
-
validation_prompt: str,
|
59 |
-
base_model: str,
|
60 |
-
resolution_s: str,
|
61 |
-
n_steps: int,
|
62 |
-
learning_rate: float,
|
63 |
-
gradient_accumulation: int,
|
64 |
-
seed: int,
|
65 |
-
fp16: bool,
|
66 |
-
use_8bit_adam: bool,
|
67 |
-
checkpointing_steps: int,
|
68 |
-
validation_epochs: int,
|
69 |
-
upload_to_hub: bool,
|
70 |
-
use_private_repo: bool,
|
71 |
-
delete_existing_repo: bool,
|
72 |
-
upload_to: str,
|
73 |
-
remove_gpu_after_training: bool,
|
74 |
-
input_token: str,
|
75 |
-
) -> str:
|
76 |
-
if SPACE_ID == ORIGINAL_SPACE_ID:
|
77 |
-
raise gr.Error(
|
78 |
-
'This Space does not work on this Shared UI. Duplicate the Space and attribute a GPU'
|
79 |
-
)
|
80 |
-
if not torch.cuda.is_available():
|
81 |
-
raise gr.Error('CUDA is not available.')
|
82 |
-
if training_video is None:
|
83 |
-
raise gr.Error('You need to upload a video.')
|
84 |
-
if not training_prompt:
|
85 |
-
raise gr.Error('The training prompt is missing.')
|
86 |
-
if not validation_prompt:
|
87 |
-
raise gr.Error('The validation prompt is missing.')
|
88 |
-
|
89 |
-
resolution = int(resolution_s)
|
90 |
-
|
91 |
-
if not output_model_name:
|
92 |
-
timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
|
93 |
-
output_model_name = f'tune-a-video-{timestamp}'
|
94 |
-
output_model_name = slugify.slugify(output_model_name)
|
95 |
-
|
96 |
-
repo_dir = pathlib.Path(__file__).parent
|
97 |
-
output_dir = repo_dir / 'experiments' / output_model_name
|
98 |
-
if overwrite_existing_model or upload_to_hub:
|
99 |
-
shutil.rmtree(output_dir, ignore_errors=True)
|
100 |
-
output_dir.mkdir(parents=True)
|
101 |
-
|
102 |
-
if upload_to_hub:
|
103 |
-
self.join_model_library_org(
|
104 |
-
self.hf_token if self.hf_token else input_token)
|
105 |
-
|
106 |
-
config = OmegaConf.load('Tune-A-Video/configs/man-surfing.yaml')
|
107 |
-
config.pretrained_model_path = self.download_base_model(base_model)
|
108 |
-
config.output_dir = output_dir.as_posix()
|
109 |
-
config.train_data.video_path = training_video.name # type: ignore
|
110 |
-
config.train_data.prompt = training_prompt
|
111 |
-
config.train_data.n_sample_frames = 8
|
112 |
-
config.train_data.width = resolution
|
113 |
-
config.train_data.height = resolution
|
114 |
-
config.train_data.sample_start_idx = 0
|
115 |
-
config.train_data.sample_frame_rate = 1
|
116 |
-
config.validation_data.prompts = [validation_prompt]
|
117 |
-
config.validation_data.video_length = 8
|
118 |
-
config.validation_data.width = resolution
|
119 |
-
config.validation_data.height = resolution
|
120 |
-
config.validation_data.num_inference_steps = 50
|
121 |
-
config.validation_data.guidance_scale = 7.5
|
122 |
-
config.learning_rate = learning_rate
|
123 |
-
config.gradient_accumulation_steps = gradient_accumulation
|
124 |
-
config.train_batch_size = 1
|
125 |
-
config.max_train_steps = n_steps
|
126 |
-
config.checkpointing_steps = checkpointing_steps
|
127 |
-
config.validation_steps = validation_epochs
|
128 |
-
config.seed = seed
|
129 |
-
config.mixed_precision = 'fp16' if fp16 else ''
|
130 |
-
config.use_8bit_adam = use_8bit_adam
|
131 |
-
|
132 |
-
config_path = output_dir / 'config.yaml'
|
133 |
-
with open(config_path, 'w') as f:
|
134 |
-
OmegaConf.save(config, f)
|
135 |
-
|
136 |
-
command = f'accelerate launch Tune-A-Video/train_tuneavideo.py --config {config_path}'
|
137 |
-
subprocess.run(shlex.split(command))
|
138 |
-
save_model_card(save_dir=output_dir,
|
139 |
-
base_model=base_model,
|
140 |
-
training_prompt=training_prompt,
|
141 |
-
test_prompt=validation_prompt,
|
142 |
-
test_image_dir='samples')
|
143 |
-
|
144 |
-
message = 'Training completed!'
|
145 |
-
print(message)
|
146 |
-
|
147 |
-
if upload_to_hub:
|
148 |
-
upload_message = self.model_uploader.upload_model(
|
149 |
-
folder_path=output_dir.as_posix(),
|
150 |
-
repo_name=output_model_name,
|
151 |
-
upload_to=upload_to,
|
152 |
-
private=use_private_repo,
|
153 |
-
delete_existing_repo=delete_existing_repo,
|
154 |
-
input_token=input_token)
|
155 |
-
print(upload_message)
|
156 |
-
message = message + '\n' + upload_message
|
157 |
-
|
158 |
-
if remove_gpu_after_training:
|
159 |
-
space_id = os.getenv('SPACE_ID')
|
160 |
-
if space_id:
|
161 |
-
api = HfApi(
|
162 |
-
token=self.hf_token if self.hf_token else input_token)
|
163 |
-
api.request_space_hardware(repo_id=space_id,
|
164 |
-
hardware='cpu-basic')
|
165 |
-
|
166 |
-
return message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uploader.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
from huggingface_hub import HfApi
|
4 |
-
|
5 |
-
|
6 |
-
class Uploader:
|
7 |
-
def __init__(self, hf_token: str | None):
|
8 |
-
self.hf_token = hf_token
|
9 |
-
|
10 |
-
def upload(self,
|
11 |
-
folder_path: str,
|
12 |
-
repo_name: str,
|
13 |
-
organization: str = '',
|
14 |
-
repo_type: str = 'model',
|
15 |
-
private: bool = True,
|
16 |
-
delete_existing_repo: bool = False,
|
17 |
-
input_token: str | None = None) -> str:
|
18 |
-
|
19 |
-
api = HfApi(token=self.hf_token if self.hf_token else input_token)
|
20 |
-
|
21 |
-
if not folder_path:
|
22 |
-
raise ValueError
|
23 |
-
if not repo_name:
|
24 |
-
raise ValueError
|
25 |
-
if not organization:
|
26 |
-
organization = api.whoami()['name']
|
27 |
-
|
28 |
-
repo_id = f'{organization}/{repo_name}'
|
29 |
-
if delete_existing_repo:
|
30 |
-
try:
|
31 |
-
api.delete_repo(repo_id, repo_type=repo_type)
|
32 |
-
except Exception:
|
33 |
-
pass
|
34 |
-
try:
|
35 |
-
api.create_repo(repo_id, repo_type=repo_type, private=private)
|
36 |
-
api.upload_folder(repo_id=repo_id,
|
37 |
-
folder_path=folder_path,
|
38 |
-
path_in_repo='.',
|
39 |
-
repo_type=repo_type)
|
40 |
-
url = f'https://huggingface.co/{repo_id}'
|
41 |
-
message = f'Your model was successfully uploaded to <a href="{url}" target="_blank">{url}</a>.'
|
42 |
-
except Exception as e:
|
43 |
-
message = str(e)
|
44 |
-
return message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
import pathlib
|
4 |
-
|
5 |
-
|
6 |
-
def find_exp_dirs() -> list[str]:
|
7 |
-
repo_dir = pathlib.Path(__file__).parent
|
8 |
-
exp_root_dir = repo_dir / 'experiments'
|
9 |
-
if not exp_root_dir.exists():
|
10 |
-
return []
|
11 |
-
exp_dirs = sorted(exp_root_dir.glob('*'))
|
12 |
-
exp_dirs = [
|
13 |
-
exp_dir for exp_dir in exp_dirs
|
14 |
-
if (exp_dir / 'model_index.json').exists()
|
15 |
-
]
|
16 |
-
return [path.relative_to(repo_dir).as_posix() for path in exp_dirs]
|
17 |
-
|
18 |
-
|
19 |
-
def save_model_card(
|
20 |
-
save_dir: pathlib.Path,
|
21 |
-
base_model: str,
|
22 |
-
training_prompt: str,
|
23 |
-
test_prompt: str = '',
|
24 |
-
test_image_dir: str = '',
|
25 |
-
) -> None:
|
26 |
-
image_str = ''
|
27 |
-
if test_prompt and test_image_dir:
|
28 |
-
image_paths = sorted((save_dir / test_image_dir).glob('*.gif'))
|
29 |
-
if image_paths:
|
30 |
-
image_path = image_paths[-1]
|
31 |
-
rel_path = image_path.relative_to(save_dir)
|
32 |
-
image_str = f'''## Samples
|
33 |
-
Test prompt: {test_prompt}
|
34 |
-
|
35 |
-
![{image_path.stem}]({rel_path})'''
|
36 |
-
|
37 |
-
model_card = f'''---
|
38 |
-
license: creativeml-openrail-m
|
39 |
-
base_model: {base_model}
|
40 |
-
training_prompt: {training_prompt}
|
41 |
-
tags:
|
42 |
-
- stable-diffusion
|
43 |
-
- stable-diffusion-diffusers
|
44 |
-
- text-to-image
|
45 |
-
- diffusers
|
46 |
-
- text-to-video
|
47 |
-
- tune-a-video
|
48 |
-
inference: false
|
49 |
-
---
|
50 |
-
|
51 |
-
# Tune-A-Video - {save_dir.name}
|
52 |
-
|
53 |
-
## Model description
|
54 |
-
- Base model: [{base_model}](https://huggingface.co/{base_model})
|
55 |
-
- Training prompt: {training_prompt}
|
56 |
-
|
57 |
-
{image_str}
|
58 |
-
|
59 |
-
## Related papers:
|
60 |
-
- [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
|
61 |
-
- [Stable-Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
|
62 |
-
'''
|
63 |
-
|
64 |
-
with open(save_dir / 'README.md', 'w') as f:
|
65 |
-
f.write(model_card)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|