import torch from transformers import pipeline from PIL import Image import matplotlib.pyplot as plt import io detector50 = pipeline(model="TuningAI/DETR-BASE_Marine") import gradio as gr fdic = { "style" : "italic", "size" : 13, "color" : "red", "weight" : "bold" } labels_ = { "LABEL_0":"None" , "LABEL_1": "Boat" ,"LABEL_2": "Car" ,"LABEL_3" : "Dock" , "LABEL_4" : "Jetski" ,"LABEL_5" : "Lift"} def get_figure(in_pil_img, in_results): plt.figure(figsize=(16, 10)) plt.imshow(in_pil_img) ax = plt.gca() for prediction in in_results: selected_color ="#008000" x, y = prediction['box']['xmin'], prediction['box']['ymin'], w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin'] ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3)) ax.text(x, y, f"{labels_[prediction['label']]}: {round(prediction['score']*100, 1)}%", fontdict=fdic) plt.axis("off") return plt.gcf() def infer(in_pil_img): results = detector50(in_pil_img) figure = get_figure(in_pil_img, results) buf = io.BytesIO() figure.savefig(buf, bbox_inches='tight') buf.seek(0) output_pil_img = Image.open(buf) return output_pil_img with gr.Blocks(title="DETR Object Detection") as demo: with gr.Row(): input_image = gr.Image(label="Input image", type="pil") output_image = gr.Image(label="Output image with predicted instances", type="pil") gr.Examples(["1.jpg" , "5.jpg"], inputs=input_image) send_btn = gr.Button("start") send_btn.click(fn=infer, inputs=input_image, outputs=[output_image]) demo.launch(debug=True)