File size: 65,438 Bytes
be51117 ed8ffe4 be51117 9f25a88 7e26f08 9f25a88 be51117 9f25a88 be51117 9df20d9 0b9d59b 9df20d9 0b9d59b be51117 9df20d9 0b9d59b 9df20d9 0b9d59b b415855 0b9d59b 90be64a 0b9d59b 9df20d9 0b9d59b ce9f49f 0b9d59b b415855 0b9d59b 9df20d9 be51117 055a6c5 b415855 055a6c5 b415855 055a6c5 b415855 055a6c5 b415855 055a6c5 b415855 055a6c5 b415855 055a6c5 b415855 055a6c5 b415855 055a6c5 b415855 055a6c5 b415855 055a6c5 be51117 0b9d59b b415855 0b9d59b 9df20d9 0b9d59b b415855 0b9d59b b415855 0b9d59b b415855 0b9d59b be51117 eea923f be51117 eea923f be51117 eea923f be51117 eea923f be51117 eea923f be51117 eea923f be51117 eea923f be51117 b415855 ce9f49f b415855 be51117 eea923f be51117 860c94d 055a6c5 be51117 9df20d9 be51117 eea923f be51117 eea923f be51117 eea923f be51117 eea923f be51117 b415855 be51117 eea923f be51117 eea923f be51117 9df20d9 be51117 eea923f be51117 eea923f be51117 eea923f be51117 eea923f be51117 eea923f be51117 9df20d9 be51117 eea923f be51117 accafbd be51117 accafbd be51117 accafbd be51117 accafbd be51117 accafbd be51117 accafbd be51117 ce9f49f be51117 b415855 accafbd be51117 accafbd be51117 b415855 be51117 ce9f49f be51117 ce9f49f be51117 ce9f49f accafbd 9df20d9 ce9f49f 9df20d9 ce9f49f 9df20d9 accafbd be51117 accafbd ce9f49f be51117 accafbd be51117 04a8fd7 0ebd13f 04a8fd7 be51117 055a6c5 be51117 b415855 be51117 00daa22 be51117 606d17a be51117 606d17a be51117 b415855 be51117 b415855 be51117 b415855 be51117 b415855 be51117 00daa22 be51117 00daa22 be51117 00daa22 be51117 00daa22 be51117 055a6c5 be51117 00daa22 be51117 055a6c5 be51117 00daa22 be51117 0f1a2b4 be51117 00ea43c be51117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 |
import geopandas as gpd
import folium
import numpy as np
from folium.plugins import HeatMap, MeasureControl
import matplotlib.pyplot as plt
import io
from io import BytesIO
import base64
import json
import pandas as pd
from folium.plugins import HeatMapWithTime
from scipy.interpolate import griddata,bisplrep, bisplev
from pykrige.ok import OrdinaryKriging
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib import cm
from matplotlib.colors import Normalize
from scipy import stats
import gradio as gr
import os
from dotenv import load_dotenv
load_dotenv()
groq_api_key=os.getenv('GROQ_API_KEY')
from groq import Groq
client = Groq(
api_key=groq_api_key,
)
def interpolation_geojson(json_file, chem_symbol, lat_min, lat_max, long_min, long_max, method):
try:
# Load geochemical data from JSON file
with open(json_file, 'r') as f:
data = json.load(f)
features = data['features']
# Extract relevant properties into lists
coordinates = []
values = []
for feature in features:
properties = feature['properties']
geometry = feature['geometry']
latitude = geometry['coordinates'][1]
longitude = geometry['coordinates'][0]
if lat_min <= latitude <= lat_max and long_min <= longitude <= long_max:
value = properties.get(chem_symbol, None)
if value is not None and not np.isnan(value): # Check for valid values
coordinates.append([latitude, longitude])
values.append(value)
if not coordinates:
return {"message": "No data found within specified coordinates."}
# Normalize the values for Kriging interpolation
values = np.array(values)
normalized_values = (values - np.mean(values)) / np.std(values)
# Add jitter to coordinates to avoid singular matrix error
coordinates = np.array(coordinates)
coordinates += np.random.normal(scale=1e-6, size=coordinates.shape)
# Prepare grid for interpolation
grid_lat = np.linspace(lat_min, lat_max, 100)
grid_long = np.linspace(long_min, long_max, 100)
grid_lat, grid_long = np.meshgrid(grid_lat, grid_long)
# Perform interpolation
points = np.array(coordinates)
interpolation_type = "nan"
if method == 1:
# IDW Interpolation
interpolation_type = "IDW"
grid_z = griddata(points, values, (grid_lat, grid_long), method='cubic')
elif method == 2:
# Spline Interpolation
interpolation_type = "Spline"
tck = bisplrep(points[:, 0], points[:, 1], values, s=0)
# s is the smoothing value and is chosen by trial and error
grid_z = bisplev(grid_lat[:, 0], grid_long[0, :], tck)
elif method == 3:
# Kriging interpolation
interpolation_type = "Kriging"
try:
variogram_model = 'spherical' # Change this to other models if needed ('exponential', 'gaussian')
OK = OrdinaryKriging(points[:, 0], points[:, 1], normalized_values, variogram_model=variogram_model, nlags=6)
grid_z, _ = OK.execute('grid', grid_lat[0, :], grid_long[:, 0])
# Denormalize the grid_z values
grid_z = grid_z * np.std(values) + np.mean(values)
except Exception as e:
return {"message": f"Kriging interpolation error: {str(e)}"}
elif method == 4:
# Nearest Neighbor Interpolation
interpolation_type = "Nearest Neighbor"
grid_z = griddata(points, values, (grid_lat, grid_long), method='nearest')
# Initialize the map centered around the mean of latitude and longitude limits
map_center = [(lat_min + lat_max) / 2, (long_min + long_max) / 2]
my_map = folium.Map(location=map_center, zoom_start=10, control_scale=True)
# Add heatmap layer to the map
heat_data = []
for i in range(grid_lat.shape[0]):
for j in range(grid_long.shape[1]):
if not np.isnan(grid_z[i, j]):
heat_data.append([grid_lat[i, j], grid_long[i, j], grid_z[i, j]])
HeatMap(heat_data, radius=15, blur=25, max_zoom=18, gradient={0.4: 'blue', 0.65: 'lime', 1: 'red'}).add_to(my_map)
# # Add invisible tooltips (Popups) on hover for heatmap points
# for lat, lon, value in heat_data:
# folium.Marker(
# location=[lat, lon],
# icon=folium.DivIcon(html=f"""<div style="display:none;">{value} ppm</div>"""),
# tooltip=f'{chem_symbol}: {value:.2f} ppm'
# ).add_to(my_map)
# Add a color legend to the map
colormap = folium.LinearColormap(
colors=['green', 'orange', 'red'],
vmin=np.min(values),
vmax=np.max(values),
caption=f'{chem_symbol} Concentration (ppm)'
)
colormap.add_to(my_map)
my_map.add_child(MeasureControl())
north_arrow_svg = """
<div style="position: fixed;
bottom: 30px; left: 10px; width: 40px; height: 40px;
z-index: 1000; pointer-events: none;">
<div>North</div>
<svg version="1.1" id="icons" xmlns="http://www.w3.org/2000/svg" x="0" y="0" viewBox="0 0 128 128" style="enable-background:new 0 0 128 128" xml:space="preserve">
<style>.st0,.st1{display:none;fill:#191919}.st1,.st3{fill-rule:evenodd;clip-rule:evenodd}.st3,.st4{display:inline;fill:#191919}</style>
<g id="row1">
<path id="nav:2_3_" d="M64 1 17.9 127 64 99.8l46.1 27.2L64 1zm0 20.4 32.6 89.2L64 91.3V21.4z" style="fill:#191919"/>
</g>
</svg>
</div>
"""
my_map.get_root().html.add_child(folium.Element(north_arrow_svg))
# Save the map as an HTML string
map_html = my_map.get_root().render()
# Compute statistics
data_mean = np.mean(values)
data_median = np.median(values)
data_mode = int(np.bincount(values.astype(int)).argmax()) if len(np.unique(values)) > 1 else 'No unique mode'
data_stdev = np.std(values)
data_variance = np.var(values)
data_min = np.min(values)
data_max = np.max(values)
data_count = len(values)
# Prepare message with statistics
message = f"Heatmap of {interpolation_type} interpolated data created successfully for {chem_symbol}.\n"
message += f"Statistics:\n"
message += f" - Mean: {data_mean:.2f} ppm\n"
message += f" - Median: {data_median:.2f} ppm\n"
message += f" - Mode: {data_mode} ppm\n"
message += f" - Std. Deviation: {data_stdev:.2f} ppm\n"
message += f" - Variance: {data_variance:.2f} ppm²\n"
message += f" - Min: {data_min:.2f} ppm\n"
message += f" - Max: {data_max:.2f} ppm\n"
message += f"Number of points: {data_count}\n"
return {"message": message, "html": map_html}
except Exception as e:
return {"message": f"An error occurred: {str(e)}"}
def plot_high_value_points(geojson_file, chem_symbol, lat_min, lat_max, long_min, long_max, threshold):
"""
Plots points on a map for geochemical data that have values higher than a specified threshold.
Also calculates and includes statistics (mean, mode, median, std deviation, variance) of the chemical values.
Parameters:
- geojson_file (str): The file path to the GeoJSON file containing geochemical data.
- chem_symbol (str): The chemical symbol to visualize.
- lat_min (float): The minimum latitude value.
- lat_max (float): The maximum latitude value.
- long_min (float): The minimum longitude value.
- long_max (float): The maximum longitude value.
- threshold (float): The threshold value for chemical concentration in ppm.
Returns:
- dict: A dictionary containing the message and HTML content of the generated map.
{
"message": str,
"html": str (optional)
}
"""
# Define lat/long limits
lat_limits = (lat_min, lat_max)
long_limits = (long_min, long_max)
try:
# Load GeoJSON data
gdf = gpd.read_file(geojson_file)
# Check if the chemical symbol exists in the data
if chem_symbol not in gdf.columns:
return {"message": f"Error: Chemical symbol '{chem_symbol}' not found in the data."}
# Filter data for the specified lat/long limits
gdf = gdf[(gdf.geometry.y >= lat_limits[0]) & (gdf.geometry.y <= lat_limits[1]) &
(gdf.geometry.x >= long_limits[0]) & (gdf.geometry.x <= long_limits[1])]
if gdf.empty:
return {"message": "Error: No data available within the specified lat/long limits."}
# Calculate statistics of the chemical values
chem_values = gdf[chem_symbol].values
mean_value = np.mean(chem_values)
mode_value = stats.mode(chem_values)
median_value = np.median(chem_values)
std_deviation = np.std(chem_values)
variance = np.var(chem_values)
data_count = len(chem_values)
# Filter points with values higher than the threshold
high_value_points = gdf[gdf[chem_symbol] > threshold]
# Base map centered on the midpoint of the given lat/long limits
lat_center = (lat_limits[0] + lat_limits[1]) / 2
long_center = (long_limits[0] + long_limits[1]) / 2
m = folium.Map(location=[lat_center, long_center], zoom_start=10, control_scale=True)
# Add markers for high value points with tooltips
for idx, row in high_value_points.iterrows():
tooltip_text = (f'{chem_symbol}: {row[chem_symbol]:.2f} ppm<br>'
f'Coordinates: ({row.geometry.y:.6f}, {row.geometry.x:.6f})')
folium.Marker(
location=[row.geometry.y, row.geometry.x],
tooltip=tooltip_text
).add_to(m)
# Add layer control to toggle markers
folium.LayerControl().add_to(m)
# Add Measure Control with custom CSS to position it lower
measure_control = MeasureControl()
m.add_child(measure_control)
measure_control_css = """
<style>
.leaflet-control-measure {
top: 60px !important; /* Adjust this value to move the control lower */
}
</style>
"""
m.get_root().html.add_child(folium.Element(measure_control_css))
north_arrow_svg = """
<div style="position: fixed;
top: 40px; right: 10px; width: 40px; height: 40px;
z-index: 1000; pointer-events: none;">
<div style="margin-top:22px;">North</div>
<svg version="1.1" id="icons" xmlns="http://www.w3.org/2000/svg" x="0" y="0" viewBox="0 0 128 128" style="enable-background:new 0 0 128 128" xml:space="preserve">
<style>.st0,.st1{display:none;fill:#191919}.st1,.st3{fill-rule:evenodd;clip-rule:evenodd}.st3,.st4{display:inline;fill:#191919}</style>
<g id="row1">
<path id="nav:2_3_" d="M64 1 17.9 127 64 99.8l46.1 27.2L64 1zm0 20.4 32.6 89.2L64 91.3V21.4z" style="fill:#191919"/>
</g>
</svg>
</div>
"""
m.get_root().html.add_child(folium.Element(north_arrow_svg))
# Generate the HTML content
html_content = m.get_root().render()
# Construct the message with statistics
message = f"Plotted points with '{chem_symbol}' values higher than {threshold:.2f} ppm\n"
message += f"Mean: {mean_value:.2f} ppm\n"
message += f"Mode: {mode_value} ppm\n"
message += f"Median: {median_value:.2f} ppm\n"
message += f"Standard Deviation: {std_deviation:.2f} ppm\n"
message += f"Variance: {variance:.2f} ppm\n"
message += f"Number of points: {data_count}\n"
return {
"message": message,
"html": html_content
}
except Exception as e:
return {"message": f"An error occurred: {str(e)}"}
def create_heatmap(geojson_file, chem_symbol, lat_min, lat_max, long_min, long_max):
"""
Generates a heatmap from geochemical data within specified latitudinal and longitudinal limits.
Parameters:
- geojson_file (str): The file path to the GeoJSON file containing geochemical data.
- chem_symbol (str): The chemical symbol to visualize.
- lat_min (float): The minimum latitude value.
- lat_max (float): The maximum latitude value.
- long_min (float): The minimum longitude value.
- long_max (float): The maximum longitude value.
Returns:
- dict: A dictionary containing the message and HTML content of the generated heatmap.
{
"message": str,
"html": str (optional)
}
"""
# Define lat/long limits
lat_limits = (lat_min, lat_max)
long_limits = (long_min, long_max)
try:
# Load GeoJSON data
gdf = gpd.read_file(geojson_file)
# Check if the chemical symbol exists in the data
if chem_symbol not in gdf.columns:
return {"message": f"Error: Chemical symbol '{chem_symbol}' not found in the data."}
# Filter data for the specified lat/long limits
gdf = gdf[(gdf.geometry.y >= lat_limits[0]) & (gdf.geometry.y <= lat_limits[1]) &
(gdf.geometry.x >= long_limits[0]) & (gdf.geometry.x <= long_limits[1])]
if gdf.empty:
return {"message": "Error: No data available within the specified lat/long limits."}
# Prepare data for heatmap
heat_data = [[point.y, point.x, value] for point, value in zip(gdf.geometry, gdf[chem_symbol])]
# Base map centered on the midpoint of the given lat/long limits
lat_center = (lat_limits[0] + lat_limits[1]) / 2
long_center = (long_limits[0] + long_limits[1]) / 2
m = folium.Map(location=[lat_center, long_center], zoom_start=10, control_scale=True)
# Add heatmap layer
heatmap_layer = HeatMap(heat_data, min_opacity=0.2, radius=15, blur=15)
heatmap_layer.add_to(m)
# Add invisible markers with tooltips for interactivity
for point, value in zip(gdf.geometry, gdf[chem_symbol]):
folium.Marker(
location=[point.y, point.x],
icon=folium.DivIcon(html=f"""<div style="display:none;">{value} ppm</div>"""),
tooltip=f'{chem_symbol}: {value} ppm'
).add_to(m)
# Add layer control to toggle heatmap
folium.LayerControl().add_to(m)
# max_value = gdf[chem_symbol].max()
# medium_threshold = max_value / 2
# low_threshold = 0
# Define value thresholds for the legend
low_threshold = gdf[chem_symbol].min()
#medium_threshold = high_threshold/2 # Adjust these values based on your data
high_threshold = gdf[chem_symbol].max()
# Add a color legend to the map
colormap = folium.LinearColormap(
colors=['green', 'orange', 'red'],
vmin=low_threshold,
vmax=high_threshold,
caption=f'{chem_symbol} Concentration (ppm)'
)
colormap.add_to(m)
m.add_child(MeasureControl())
north_arrow_svg = """
<div style="position: fixed;
bottom: 30px; left: 10px; width: 40px; height: 40px;
z-index: 1000; pointer-events: none;">
<div>North</div>
<svg version="1.1" id="icons" xmlns="http://www.w3.org/2000/svg" x="0" y="0" viewBox="0 0 128 128" style="enable-background:new 0 0 128 128" xml:space="preserve">
<style>.st0,.st1{display:none;fill:#191919}.st1,.st3{fill-rule:evenodd;clip-rule:evenodd}.st3,.st4{display:inline;fill:#191919}</style>
<g id="row1">
<path id="nav:2_3_" d="M64 1 17.9 127 64 99.8l46.1 27.2L64 1zm0 20.4 32.6 89.2L64 91.3V21.4z" style="fill:#191919"/>
</g>
</svg>
</div>
"""
m.get_root().html.add_child(folium.Element(north_arrow_svg))
# Generate the HTML content
html_content = m.get_root().render()
chem_values = gdf[chem_symbol].values
mean_value = np.mean(chem_values)
mode_value = stats.mode(chem_values) # Mode can have multiple values, taking the first one
median_value = np.median(chem_values)
std_deviation = np.std(chem_values)
variance = np.var(chem_values)
data_count = len(chem_values)
return {
"message": f"Heatmap for '{chem_symbol}'."
f"Here are the Statistics:\n"
f"Mean: {mean_value:.2f} ppm\n"
f"Median: {median_value:.2f} ppm\n"
f"Mode: {mode_value} ppm\n"
f"Standard Deviation: {std_deviation:.2f} ppm\n"
f"Variance: {variance:.2f} ppm^2\n"
f"Minimum: {low_threshold:.2f} ppm\n"
f"Maximum: {high_threshold:.2f} ppm\n"
f"Number of points: {data_count}",
"html": html_content
}
except Exception as e:
return {"message": f"An error occurred: {str(e)}"}
def create_heatmap_old(geojson_file, chem_symbol, lat_min, lat_max, long_min, long_max):
"""
Generates a heatmap from geochemical data within specified latitudinal and longitudinal limits.
Parameters:
- geojson_file (str): The file path to the GeoJSON file containing geochemical data.
- chem_symbol (str): The chemical symbol to visualize.
- lat_min (float): The minimum latitude value.
- lat_max (float): The maximum latitude value.
- long_min (float): The minimum longitude value.
- long_max (float): The maximum longitude value.
Returns:
- dict: A dictionary containing the message and HTML content of the generated heatmap.
{
"message": str,
"html": str (optional)
}
"""
# lat/long limits
lat_limits = (lat_min, lat_max)
long_limits = (long_min, long_max)
try:
# GeoJSON data
gdf = gpd.read_file(geojson_file)
if chem_symbol not in gdf.columns:
return {"message": f"Error: Chemical symbol '{chem_symbol}' not found in the data."}
# Filter data for the specified lat/long limits
gdf = gdf[(gdf.geometry.y >= lat_limits[0]) & (gdf.geometry.y <= lat_limits[1]) &
(gdf.geometry.x >= long_limits[0]) & (gdf.geometry.x <= long_limits[1])]
if gdf.empty:
return {"message": "Error: No data available within the specified lat/long limits."}
# Prepare data for heatmap
heat_data = [[point.y, point.x, value] for point, value in zip(gdf.geometry, gdf[chem_symbol])]
# Base map centered on the midpoint
lat_center = (lat_limits[0] + lat_limits[1]) / 2
long_center = (long_limits[0] + long_limits[1]) / 2
m = folium.Map(location=[lat_center, long_center], zoom_start=10)
# Add heatmap layer
heatmap_layer = HeatMap(heat_data, min_opacity=0.2, radius=15, blur=15)
heatmap_layer.add_to(m)
# Add invisible markers with tooltips
for point, value in zip(gdf.geometry, gdf[chem_symbol]):
folium.Marker(
location=[point.y, point.x],
icon=folium.DivIcon(html=f"""<div style="display:none;">{value}</div>"""),
tooltip=f'{chem_symbol}: {value}'
).add_to(m)
# layer control to toggle heatmap
folium.LayerControl().add_to(m)
html_content = m.get_root().render()
return {
"message": f"Here is your Heatmap for '{chem_symbol}'.",
"html": html_content
}
except Exception as e:
return {"message": f"An error occurred while I was creating the heatmap: {str(e)}"}
def interpolation_contour(json_file, chem_symbol, lat_min, lat_max, long_min, long_max, method): #USING CONTOUR
try:
# Load geochemical data from JSON file
with open(json_file, 'r') as f:
data = json.load(f)
features = data['features']
# Extract relevant properties into lists
coordinates = []
values = []
for feature in features:
properties = feature['properties']
geometry = feature['geometry']
latitude = geometry['coordinates'][1]
longitude = geometry['coordinates'][0]
if lat_min <= latitude <= lat_max and long_min <= longitude <= long_max:
value = properties.get(chem_symbol, None)
if value is not None and not np.isnan(value): # Check for valid values
coordinates.append([latitude, longitude])
values.append(value)
if not coordinates:
return {"message": "No data found within specified coordinates."}
# Normalize the values for Kriging interpolation
values = np.array(values)
normalized_values = (values - np.mean(values)) / np.std(values)
# Add jitter to coordinates to avoid singular matrix error
coordinates = np.array(coordinates)
coordinates += np.random.normal(scale=1e-6, size=coordinates.shape)
# Prepare grid for interpolation
grid_lat = np.linspace(lat_min, lat_max, 100)
grid_long = np.linspace(long_min, long_max, 100)
grid_lat, grid_long = np.meshgrid(grid_lat, grid_long)
# Perform interpolation
points = np.array(coordinates)
interpolation_type = "nan"
if method == 1:
# IDW Interpolation
interpolation_type = "IDW"
grid_z = griddata(points, values, (grid_lat, grid_long), method='cubic')
elif method == 2:
# Spline Interpolation
interpolation_type = "Spline"
tck = bisplrep(points[:, 0], points[:, 1], values, s=0)
# s is the smoothing value and is chosen by trial and error
grid_z = bisplev(grid_lat[:, 0], grid_long[0, :], tck)
elif method == 3:
# Kriging interpolation
interpolation_type = "Kriging"
try:
variogram_model = 'spherical' # Change this to other models if needed ('exponential', 'gaussian')
OK = OrdinaryKriging(points[:, 0], points[:, 1], normalized_values, variogram_model=variogram_model, nlags=6)
grid_z, _ = OK.execute('grid', grid_lat[0, :], grid_long[:, 0])
# Denormalize the grid_z values
grid_z = grid_z * np.std(values) + np.mean(values)
except Exception as e:
return {"message": f"Kriging interpolation error: {str(e)}"}
elif method == 4:
# Nearest Neighbor Interpolation
interpolation_type = "Nearest Neighbor"
grid_z = griddata(points, values, (grid_lat, grid_long), method='nearest')
# Generate the contour plot
fig, ax = plt.subplots()
contour = ax.contourf(grid_long, grid_lat, grid_z, cmap=cm.jet, alpha=0.6) # Adjust the colormap as needed
cbar = plt.colorbar(contour, ax=ax, label=f'{chem_symbol} Concentration (ppm)')
ax.axis('off')
# Save the contour plot to a PNG image in memory
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
plt.close(fig)
buf.seek(0)
image_base64 = base64.b64encode(buf.read()).decode('utf-8')
# Initialize the map centered around the mean of latitude and longitude limits
map_center = [(lat_min + lat_max) / 2, (long_min + long_max) / 2]
my_map = folium.Map(location=map_center, zoom_start=10, control_scale=True)
# Overlay the contour plot image on the map
folium.raster_layers.ImageOverlay(
image=f'data:image/png;base64,{image_base64}',
bounds=[[lat_min, long_min], [lat_max, long_max]],
opacity=0.6
).add_to(my_map)
# Add layer control to toggle contour image
folium.LayerControl().add_to(my_map)
# # Add a color legend to the map
# colormap = folium.LinearColormap(
# colors=['green', 'orange', 'red'],
# vmin=np.min(values),
# vmax=np.max(values),
# caption=f'{chem_symbol} Concentration (ppm)'
# )
# colormap.add_to(my_map)
measure_control = MeasureControl()
my_map.add_child(measure_control)
measure_control_css = """
<style>
.leaflet-control-measure {
top: 60px !important; /* Adjust this value to move the control lower */
}
</style>
"""
my_map.get_root().html.add_child(folium.Element(measure_control_css))
north_arrow_svg = """
<div style="position: fixed;
top: 40px; right: 10px; width: 40px; height: 40px;
z-index: 1000; pointer-events: none;">
<div style="margin-top:22px;">North</div>
<svg version="1.1" id="icons" xmlns="http://www.w3.org/2000/svg" x="0" y="0" viewBox="0 0 128 128" style="enable-background:new 0 0 128 128" xml:space="preserve">
<style>.st0,.st1{display:none;fill:#191919}.st1,.st3{fill-rule:evenodd;clip-rule:evenodd}.st3,.st4{display:inline;fill:#191919}</style>
<g id="row1">
<path id="nav:2_3_" d="M64 1 17.9 127 64 99.8l46.1 27.2L64 1zm0 20.4 32.6 89.2L64 91.3V21.4z" style="fill:#191919"/>
</g>
</svg>
</div>
"""
my_map.get_root().html.add_child(folium.Element(north_arrow_svg))
# Save the map as an HTML string
map_html = my_map.get_root().render()
# Compute statistics
data_mean = np.mean(values)
data_median = np.median(values)
data_mode = int(np.bincount(values.astype(int)).argmax()) if len(np.unique(values)) > 1 else 'No unique mode'
data_stdev = np.std(values)
data_variance = np.var(values)
data_min = np.min(values)
data_max = np.max(values)
data_count = len(values)
# Prepare message with statistics
message = f"Contour map of {interpolation_type} interpolated data created successfully for {chem_symbol}.\n"
message += f"Statistics:\n"
message += f" - Mean: {data_mean:.2f} ppm\n"
message += f" - Median: {data_median:.2f} ppm\n"
message += f" - Mode: {data_mode} ppm\n"
message += f" - Std. Deviation: {data_stdev:.2f} ppm\n"
message += f" - Variance: {data_variance:.2f} ppm²\n"
message += f" - Min: {data_min:.2f} ppm\n"
message += f" - Max: {data_max:.2f} ppm\n"
message += f"Number of points: {data_count}"
return {"message": message, "html": map_html}
except Exception as e:
return {"message": f"An error occurred: {str(e)}"}
def create_geochem_avg_histogram(geojson_file, chem_symbols, lat_min, lat_max, long_min, long_max):
try:
geo_data = gpd.read_file(geojson_file)
filtered_data = geo_data.cx[long_min:long_max, lat_min:lat_max]
# a dictionary to store average values for each chemical
avg_values = {}
# Calculate average concentration for each chemical symbol
for chem_symbol in chem_symbols:
if chem_symbol in filtered_data.columns:
avg_value = filtered_data[chem_symbol].mean()
avg_values[chem_symbol] = avg_value
# If there's no data for the chemical symbol, skip it
else:
print(f"no data for {chem_symbol}")
# Find the chemical with the highest average concentration
max_avg_chem = max(avg_values, key=avg_values.get) if avg_values else None
max_avg_value = avg_values[max_avg_chem] if max_avg_chem else None
# Create the histogram
if avg_values:
plt.figure(figsize=(10, 6))
plt.bar(avg_values.keys(), avg_values.values(), color='skyblue')
plt.xlabel('Chemical Symbols')
plt.ylabel('Average Concentration')
plt.title('Average Concentration of Chemicals')
# Save the plot to a BytesIO object
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# Convert the plot to a base64 string
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close()
# Create the HTML content
html_content = f'<img src="data:image/png;base64,{img_base64}" style="width: 500px; height: 400px;" />'
else:
html_content = '<p>No data available for the specified chemicals and area.</p>'
# Create the JSON response
response = {
"message": f"Take a look at the histogram with maximum being {max_avg_chem} with value of {max_avg_value}.",
"html": html_content
}
return response
except Exception as e:
return {"message": f"An error occurred: {str(e)}"}
def interpolation_geojsonold(json_file, chem_symbol, lat_min, lat_max, long_min, long_max, method):
try:
# from JSON file into a DataFrame
with open(json_file, 'r') as f:
data = json.load(f)
features = data['features']
# Extract relevant properties into lists
coordinates = []
values = []
for feature in features:
properties = feature['properties']
geometry = feature['geometry']
latitude = geometry['coordinates'][1]
longitude = geometry['coordinates'][0]
if lat_min <= latitude <= lat_max and long_min <= longitude <= long_max:
value = properties.get(chem_symbol, None)
if value is not None and not np.isnan(value): # Check for valid values
coordinates.append([latitude, longitude])
values.append(value)
if not coordinates:
return {"message":"No data found within specified coordinates."}
# Create a DataFrame from extracted data
df = pd.DataFrame({'Latitude': [coord[0] for coord in coordinates],
'Longitude': [coord[1] for coord in coordinates],
'Value': values})
# grid for interpolation
grid_lat = np.linspace(lat_min, lat_max, 100)
grid_long = np.linspace(long_min, long_max, 100)
grid_lat, grid_long = np.meshgrid(grid_lat, grid_long)
points = np.array(coordinates)
values = np.array(values)
interpolation_type="nan"
if method==1:
#IDW Interpolation
interpolation_type = "IDW"
grid_z = griddata(points, values, (grid_lat, grid_long), method='cubic')
elif method==2:
#Spline Interpolation:
interpolation_type = "Spline"
tck = bisplrep(points[:, 0], points[:, 1], values, s=0)
#s is the smoothing value and is chosen by trial and error
grid_z = bisplev(grid_lat[:, 0], grid_long[0, :], tck)
elif method==3:
#Kriging interpolation
interpolation_type = "Kriging"
OK = OrdinaryKriging(points[:, 0], points[:, 1], values, variogram_model='linear')
grid_z, _ = OK.execute('grid', grid_lat[0, :], grid_long[:, 0])
elif method==4:
#Nearest Neighbor
interpolation_type = "Nearest Neighbor"
grid_z = griddata(points, values, (grid_lat, grid_long), method='nearest')
# Initialize the map centered around the mean
map_center = [(lat_min + lat_max) / 2, (long_min + long_max) / 2]
my_map = folium.Map(location=map_center, zoom_start=10)
# Add heatmap layer to the map
heat_data = []
for i in range(grid_lat.shape[0]):
for j in range(grid_long.shape[1]):
if not np.isnan(grid_z[i, j]):
heat_data.append([grid_lat[i, j], grid_long[i, j], grid_z[i, j]])
HeatMap(heat_data, radius=15, blur=25, max_zoom=18).add_to(my_map)
# Add legend to the map
caption = f'{interpolation_type} Interpolated {chem_symbol} Heatmap'
my_map.get_root().html.add_child(folium.Element(f'<div style="position: fixed; bottom: 50px; left: 50px; z-index:9999; background-color:white; padding: 10px; border: 2px solid grey; border-radius: 5px;">{caption}</div>'))
# Save the map as an HTML string
map_html = my_map.get_root().render()
return {"message":f"Heatmap of {interpolation_type} interpolated data created successfully for {chem_symbol}.","html": map_html}
except Exception as e:
return {"message":f"An error occurred: {str(e)}"}
def plot_excavation_sites(geojson_file, lat_min, lat_max, long_min, long_max):
"""
Plots excavation sites from GeoJSON data as markers on a map with hover tooltips and generates HTML content.
Parameters:
- geojson_file (str): The file path to the GeoJSON file containing excavation site data.
- lat_min (float): The minimum latitude value.
- lat_max (float): The maximum latitude value.
- long_min (float): The minimum longitude value.
- long_max (float): The maximum longitude value.
Returns:
- dict: A dictionary containing the message and HTML content of the generated map.
{
"message": str,
"html": str (optional)
}
"""
lat_center = (lat_min + lat_max) / 2
long_center = (long_min + long_max) / 2
m = folium.Map(location=[lat_center, long_center], zoom_start=10, control_scale=True)
try:
with open(geojson_file, 'r') as f:
data = json.load(f)
# Iterate through each feature in the GeoJSON file. Use the coordinates of geometry and not feature(creates conflicts for magnetic)
for feature in data['features']:
properties = feature['properties']
geometry = feature['geometry']
if geometry['type'] == 'Polygon':
coordinates = geometry['coordinates'][0] # Extracting the coordinates of the Polygon
# Check if any point of the polygon falls within the specified lat/long limits
for coord in coordinates:
if (lat_min <= coord[1] <= lat_max and
long_min <= coord[0] <= long_max):
# Add marker for each excavation site
marker = folium.Marker(location=[coord[1], coord[0]],
tooltip=f"Commodity: {properties.get('commodity', 'N/A')}",
popup=f"<strong>Commodity:</strong> {properties.get('commodity', 'N/A')}<br>"
f"<strong>Exploration Agency:</strong> {properties.get('name_of_exploration_agency', 'N/A')}<br>"
f"<strong>Project Title:</strong> {properties.get('project_title', 'N/A')}<br>"
f"<strong>Exploration Stage:</strong> {properties.get('exploration_stage', 'N/A')}<br>"
f"<strong>from:</strong> {properties.get('period_of_propecting_from', 'N/A')}<strong> to:</strong>{properties.get('period_of_propecting_to', 'N/A')}<br>"
f"<strong>Prospector name:</strong> {properties.get('name_of_the_prospector','N/A')}<br>")
marker.add_to(m)
# Generate the HTML content
m.add_child(MeasureControl())
north_arrow_svg = """
<div style="position: fixed;
bottom: 30px; left: 10px; width: 40px; height: 40px;
z-index: 1000; pointer-events: none;">
<div>North</div>
<svg version="1.1" id="icons" xmlns="http://www.w3.org/2000/svg" x="0" y="0" viewBox="0 0 128 128" style="enable-background:new 0 0 128 128" xml:space="preserve">
<style>.st0,.st1{display:none;fill:#191919}.st1,.st3{fill-rule:evenodd;clip-rule:evenodd}.st3,.st4{display:inline;fill:#191919}</style>
<g id="row1">
<path id="nav:2_3_" d="M64 1 17.9 127 64 99.8l46.1 27.2L64 1zm0 20.4 32.6 89.2L64 91.3V21.4z" style="fill:#191919"/>
</g>
</svg>
</div>
"""
m.get_root().html.add_child(folium.Element(north_arrow_svg))
html_content = m.get_root().render()
return {
"message": "Excavation sites plotted successfully. You can click on the tags to know more about the excavation sites",
"html": html_content
}
except Exception as e:
return {"message": f"An error occurred: {str(e)}"}
def create_dem_mayavi( geojson_file, lat_min, lat_max, long_min, long_max):
"""
Creates a DEM from geomorphological data in a GeoJSON file and returns an HTML representation.
Parameters:
- lat_min, lat_max: Latitude boundaries.
- long_min, long_max: Longitude boundaries.
- geojson_file: Path to the GeoJSON file.
Returns:
- dict: A dictionary with a message and HTML content of the DEM.
"""
try:
# Load GeoJSON data
gdf = gpd.read_file(geojson_file)
# Filter data within specified lat/long limits
gdf = gdf.cx[long_min:long_max, lat_min:lat_max]
if gdf.empty:
return {"message": "Error: No data available within the specified lat/long limits."}
# Extract coordinates and elevation values
coordinates = []
elevations = []
for feature in gdf.itertuples():
if feature.geometry.type == 'Polygon':
coords = np.array(feature.geometry.exterior.coords)
coordinates.extend(coords)
elevations.extend([feature.shape_leng] * len(coords))
# elif feature.geometry.type == 'MultiPolygon':
# for polygon in feature.geometry:
# coords = np.array(polygon.exterior.coords)
# coordinates.extend(coords)
# elevations.extend([feature.shape_leng] * len(coords))
coordinates = np.array(coordinates)
elevations = np.array(elevations)
# Generate grid for DEM
lats = np.linspace(lat_min, lat_max, 100)
longs = np.linspace(long_min, long_max, 100)
longs, lats = np.meshgrid(longs, lats)
# Interpolate elevation values onto grid
grid_z = griddata(coordinates[:, :2], elevations, (longs, lats), method='cubic')
# Create DEM plot
fig = mlab.figure(size=(800, 600), bgcolor=(1, 1, 1))
dem_plot = mlab.surf(longs, lats, grid_z, warp_scale='auto', colormap='terrain')
mlab.colorbar(title='Elevation', orientation='vertical')
# Save the plot as HTML
html_output = 'dem_plot.html'
mlab.savefig(html_output)
mlab.close()
with open(html_output, 'r') as file:
html_content = file.read()
return {"message": "DEM generated successfully.", "html": html_content}
except Exception as e:
return {"message": f"An error occurred: {str(e)}"}
def create_dem(geojson_file, lat_min, lat_max, long_min, long_max):
"""
Creates a 3D DEM from geomorphological data in a GeoJSON file and returns an HTML representation.
Parameters:
- lat_min, lat_max: Latitude boundaries.
- long_min, long_max: Longitude boundaries.
- geojson_file: Path to the GeoJSON file.
Returns:
- dict: A dictionary with a message and HTML content of the DEM.
"""
try:
# Load GeoJSON data
gdf = gpd.read_file(geojson_file)
# Filter data within specified lat/long limits
gdf = gdf.cx[long_min:long_max, lat_min:lat_max]
if gdf.empty:
return {"message": "Error: No data available within the specified lat/long limits."}
# Extract coordinates and elevation values
coordinates = []
elevations = []
for feature in gdf.itertuples():
if feature.geometry.geom_type == 'Polygon':
coords = np.array(feature.geometry.exterior.coords)
coordinates.extend(coords)
elevations.extend([feature.shape_leng] * len(coords))
# elif feature.geometry.geom_type == 'MultiPolygon':
# for polygon in feature.geometry:
# coords = np.array(polygon.exterior.coords)
# coordinates.extend(coords)
# elevations.extend([feature.shape_leng] * len(coords))
coordinates = np.array(coordinates)
elevations = np.array(elevations)
# Generate grid for DEM
lats = np.linspace(lat_min, lat_max, 100)
longs = np.linspace(long_min, long_max, 100)
longs, lats = np.meshgrid(longs, lats)
# Interpolate elevation values onto grid
grid_z = griddata(coordinates[:, :2], elevations, (longs, lats), method='cubic')
# Create 3D DEM plot using matplotlib
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(longs, lats, grid_z, cmap='terrain')
ax.set_xlabel('Longitude')
ax.set_ylabel('Latitude')
ax.set_zlabel('Elevation')
ax.set_title('Digital Elevation Model (DEM)')
max_elevation = np.nanmax(grid_z)
ax.set_zlim(0, max_elevation)
# Save the plot to a bytes buffer
buffer = BytesIO()
plt.savefig(buffer, format='png')
plt.close()
# Encode the plot to a base64 string
buffer.seek(0)
img_str = base64.b64encode(buffer.read()).decode('utf-8')
html_content = f'<img src="data:image/png;base64,{img_str}" />'
return {"message": "3D DEM generated successfully.", "html": html_content}
except Exception as e:
return {"message": f"An error occurred: {str(e)}"}
from shapely.geometry import LineString
def create_contour_map(geojson_file, chem_symbol, lat_min, lat_max, long_min, long_max):
"""
Generates a customized contour map overlay on a Folium map from geochemical data within specified latitudinal and longitudinal limits.
Parameters:
- geojson_file (str): The file path to the GeoJSON file containing geochemical data.
- chem_symbol (str): The chemical symbol to visualize.
- lat_min (float): The minimum latitude value.
- lat_max (float): The maximum latitude value.
- long_min (float): The minimum longitude value.
- long_max (float): The maximum longitude value.
Returns:
- dict: A dictionary containing the message and HTML content of the generated contour map overlay.
{
"message": str,
"html": str (optional)
}
"""
try:
gdf = gpd.read_file(geojson_file)
# Check if the chemical symbol exists in the data
if chem_symbol not in gdf.columns:
return {"message": f"Error: Chemical symbol '{chem_symbol}' not found in the data."}
gdf = gdf[(gdf.geometry.y >= lat_min) & (gdf.geometry.y <= lat_max) &
(gdf.geometry.x >= long_min) & (gdf.geometry.x <= long_max)]
if gdf.empty:
return {"message": "Error: No data available within the specified lat/long limits."}
# data for contour plot
latitudes = gdf.geometry.y.values
longitudes = gdf.geometry.x.values
values = gdf[chem_symbol].values
# Create grid data
grid_lat, grid_long = np.mgrid[lat_min:lat_max:100j, long_min:long_max:100j]
grid_values = griddata((latitudes, longitudes), values, (grid_lat, grid_long), method='cubic')
# Generate the contour plot with custom colormap
fig, ax = plt.subplots()
contour = ax.contourf(grid_long, grid_lat, grid_values, cmap=cm.jet, alpha=0.6)
cbar = plt.colorbar(contour, ax=ax, label=chem_symbol)
ax.axis('off') # Turning off axis lines
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
plt.close(fig)
buf.seek(0)
image_base64 = base64.b64encode(buf.read()).decode('utf-8')
lat_center = (lat_min + lat_max) / 2
long_center = (long_min + long_max) / 2
m = folium.Map(location=[lat_center, long_center], zoom_start=12)
# Overlaying the contour plot image
folium.raster_layers.ImageOverlay(
image=f'data:image/png;base64,{image_base64}',
bounds=[[lat_min, long_min], [lat_max, long_max]],
opacity=0.6
).add_to(m)
# Add layer control to toggle contour image
folium.LayerControl().add_to(m)
m.add_child(MeasureControl())
north_arrow_svg = """
<div style="position: fixed;
bottom: 30px; left: 10px; width: 40px; height: 40px;
z-index: 1000; pointer-events: none;">
<div>North</div>
<svg version="1.1" id="icons" xmlns="http://www.w3.org/2000/svg" x="0" y="0" viewBox="0 0 128 128" style="enable-background:new 0 0 128 128" xml:space="preserve">
<style>.st0,.st1{display:none;fill:#191919}.st1,.st3{fill-rule:evenodd;clip-rule:evenodd}.st3,.st4{display:inline;fill:#191919}</style>
<g id="row1">
<path id="nav:2_3_" d="M64 1 17.9 127 64 99.8l46.1 27.2L64 1zm0 20.4 32.6 89.2L64 91.3V21.4z" style="fill:#191919"/>
</g>
</svg>
</div>
"""
m.get_root().html.add_child(folium.Element(north_arrow_svg))
html_content = m.get_root().render()
return {
"message": f"Your Contour map for '{chem_symbol}' is generated successfully. Please zoom in/out for a better view",
"html": html_content
}
except Exception as e:
return {"message": f"An error occurred: {str(e)}"}
def plot_high_value_points(geojson_file, chem_symbol, lat_min, lat_max, long_min, long_max, threshold):
"""
Plots points on a map for geochemical data that have values higher than a specified threshold.
Also calculates and includes statistics (mean, mode, median, std deviation, variance) of the chemical values.
Parameters:
- geojson_file (str): The file path to the GeoJSON file containing geochemical data.
- chem_symbol (str): The chemical symbol to visualize.
- lat_min (float): The minimum latitude value.
- lat_max (float): The maximum latitude value.
- long_min (float): The minimum longitude value.
- long_max (float): The maximum longitude value.
- threshold (float): The threshold value for chemical concentration in ppm.
Returns:
- dict: A dictionary containing the message and HTML content of the generated map.
{
"message": str,
"html": str (optional)
}
"""
# Define lat/long limits
lat_limits = (lat_min, lat_max)
long_limits = (long_min, long_max)
try:
# Load GeoJSON data
gdf = gpd.read_file(geojson_file)
# Check if the chemical symbol exists in the data
if chem_symbol not in gdf.columns:
return {"message": f"Error: Chemical symbol '{chem_symbol}' not found in the data."}
# Filter data for the specified lat/long limits
gdf = gdf[(gdf.geometry.y >= lat_limits[0]) & (gdf.geometry.y <= lat_limits[1]) &
(gdf.geometry.x >= long_limits[0]) & (gdf.geometry.x <= long_limits[1])]
if gdf.empty:
return {"message": "Error: No data available within the specified lat/long limits."}
# Calculate statistics of the chemical values
chem_values = gdf[chem_symbol].values
mean_value = np.mean(chem_values)
mode_value = stats.mode(chem_values)
median_value = np.median(chem_values)
std_deviation = np.std(chem_values)
variance = np.var(chem_values)
data_count = len(chem_values)
# Filter points with values higher than the threshold
high_value_points = gdf[gdf[chem_symbol] > threshold]
# Base map centered on the midpoint of the given lat/long limits
lat_center = (lat_limits[0] + lat_limits[1]) / 2
long_center = (long_limits[0] + long_limits[1]) / 2
m = folium.Map(location=[lat_center, long_center], zoom_start=10, control_scale=True)
# Add markers for high value points with tooltips
for idx, row in high_value_points.iterrows():
tooltip_text = (f'{chem_symbol}: {row[chem_symbol]:.2f} ppm<br>'
f'Coordinates: ({row.geometry.y:.6f}, {row.geometry.x:.6f})')
folium.Marker(
location=[row.geometry.y, row.geometry.x],
tooltip=tooltip_text
).add_to(m)
# Add layer control to toggle markers
folium.LayerControl().add_to(m)
# Add Measure Control with custom CSS to position it lower
measure_control = MeasureControl()
m.add_child(measure_control)
measure_control_css = """
<style>
.leaflet-control-measure {
top: 60px !important; /* Adjust this value to move the control lower */
}
</style>
"""
m.get_root().html.add_child(folium.Element(measure_control_css))
north_arrow_svg = """
<div style="position: fixed;
top: 40px; right: 10px; width: 40px; height: 40px;
z-index: 1000; pointer-events: none;">
<div style="margin-top:22px;">North</div>
<svg version="1.1" id="icons" xmlns="http://www.w3.org/2000/svg" x="0" y="0" viewBox="0 0 128 128" style="enable-background:new 0 0 128 128" xml:space="preserve">
<style>.st0,.st1{display:none;fill:#191919}.st1,.st3{fill-rule:evenodd;clip-rule:evenodd}.st3,.st4{display:inline;fill:#191919}</style>
<g id="row1">
<path id="nav:2_3_" d="M64 1 17.9 127 64 99.8l46.1 27.2L64 1zm0 20.4 32.6 89.2L64 91.3V21.4z" style="fill:#191919"/>
</g>
</svg>
</div>
"""
m.get_root().html.add_child(folium.Element(north_arrow_svg))
# Generate the HTML content
html_content = m.get_root().render()
# Construct the message with statistics
message = f"Plotted points with '{chem_symbol}' values higher than {threshold:.2f} ppm\n"
message += f"Mean: {mean_value:.2f} ppm\n"
message += f"Mode: {mode_value} ppm\n"
message += f"Median: {median_value:.2f} ppm\n"
message += f"Standard Deviation: {std_deviation:.2f} ppm\n"
message += f"Variance: {variance:.2f} ppm\n"
message += f"Number of points: {data_count}\n"
return {
"message": message,
"html": html_content
}
except Exception as e:
return {"message": f"An error occurred: {str(e)}"}
def Manager_agent(query, lat_min, lat_max, long_min, long_max):
lat_min = float(lat_min)
lat_max = float(lat_max)
long_min = float(long_min)
long_max = float(long_max)
chat_completion = client.chat.completions.create(
#
# Required parameters
#
messages=[
# Set an optional system message. This sets the behavior of the
# assistant and can be used to provide specific instructions for
# how it should behave throughout the conversation.
{
"role": "system",
"content": '''You are Khanij, an AI assistant for MECL (Mineral Exploration and Consultancy Limited).Your current knowledgebase has information of the following chemicals:
'sio2', 'al2o3', 'fe2o3', 'tio2', 'cao', 'mgo', 'mno', 'na2o', 'k2o', 'p2o5', 'loi', 'ba', 'ga', 'sc', 'v', 'th', 'pb', 'ni', 'co', 'rb', 'sr', 'y', 'zr', 'nb', 'cr', 'cu', 'zn', 'au', 'li', 'cs', 'as_', 'sb', 'bi', 'se', 'ag', 'be', 'ge', 'mo', 'sn', 'la', 'ce', 'pr', 'nd', 'sm', 'eu', 'tb', 'gd', 'dy', 'ho', 'er', 'tm', 'yb', 'lu', 'hf', 'ta', 'w', 'u', 'pt', 'pd'. You also have the elevation, gravity and magnetic values of regions of the nagpur region.
Based on the user query, determine the appropriate task to perform:
- Print "Heatmap": If the query is related to creating a heatmap.
In the next line, print a Python list with one element: the chemical formula(not name) in lowercase mentioned in the query.
- If the query mentions geophysical magnetic data, Empty the list and add 'magnetic_a' to the list.
- If it's related to gravity,Empty the list and add 'bouguer_an' to the list.
- If it's related to elevation,Empty the list and add 'elevation_' to the list.
- Do not print anything else.
- Print "Threshold": If the query is related to finding all the points higher than a threshold.
In the next line, print a Python list with 2 elements: first: the chemical formula(not name) in lowercase mentioned in the query and second: the threshold value.
- Print "Contour": If the query is related to creating Interpolation contour maps.
In the next line, print a Python list with 2 elements: 1st, the chemical formula(not name) in lowercase mentioned in the query. and 2nd, add "1": if it is IDW(inverse distance weightage), "2": if it is Spline, "3": if it is Kriging, "4" if it is Nearest Neighbor.
- If the query mentions geophysical magnetic data,Replace the first element of list and add 'magnetic_a' to the list.
- If it's related to gravity,Replace the first element of list and add 'bouguer_an' to the list.
- If it's related to elevation,Replace the first element of list and add 'elevation_' to the list.
- Do not print anything else.
- Print "Exploration": If the query is about known exploration or excavation sites of the region.
In the next line, print "['Exploration']"
- Print "KrigingInterpolation": If the query is related to Kriging interpolation.
In the next line, print a Python list with one element: the chemical formula(not name) in lowercase mentioned in the query.
- If the query mentions geophysical magnetic data,Empty the list and add 'magnetic_a' to the list.
- If it's related to gravity,Empty the list and add 'bouguer_an' to the list.
- If it's related to elevation,Empty the list and add 'elevation_' to the list.
- Do not print anything else.
- Print "IDWInterpolation": If the query is related to IDW (Inverse Distance Weighting) interpolation.
In the next line, print a Python list with one element: the chemical formula(not name) in lowercase mentioned in the query.
- If the query mentions geophysical magnetic data,Empty the list and add 'magnetic_a' to the list.
- If it's related to gravity,Empty the list and add 'bouguer_an' to the list.
- If it's related to elevation,Empty the list and add 'elevation_' to the list.
- Do not print anything else.
- Print "SplineInterpolation": If the query is related to spline interpolation.
In the next line, print a Python list with one element: the chemical formula in lowercase mentioned in the query.
- If the query mentions geophysical magnetic data,Empty the list and add 'magnetic_a' to the list.
- If it's related to gravity,Empty the list and add 'bouguer_an' to the list.
- If it's related to elevation,Empty the list and add 'elevation_' to the list.
- Do not print anything else.
- Print "NNInterpolation": If the query is related to nearest neighbor interpolation.
In the next line, print a Python list with one element: the chemical formula(not the name) in lowercase mentioned in the query.
- If the query mentions geophysical magnetic data,Empty the list and add 'magnetic_a' to the list.
- If it's related to gravity,Empty the list and add 'bouguer_an' to the list.
- If it's related to elevation,Empty the list and add 'elevation_' to the list.
- Do not print anything else.
- Print "Histogram": If the query is related to creating a histogram.
In the next line, print a Python list of chemical formulas in lowercase of the chemicals mentioned in the query.
- If there are no chemicals mentioned, print a list containing the string 'all'.
- Print a response according to your knowledge: If the query does not relate to any of the specified tasks.
In the next line print ["No maps defined"]
'''
},
# Set a user message for the assistant to respond to.
{
"role": "user",
"content": query,
}
],
# The language model which will generate the completion.
model="llama3-70b-8192",
#
# Optional parameters
#
# Controls randomness: lowering results in less random completions.
# As the temperature approaches zero, the model will become deterministic
# and repetitive.
temperature=0.5,
# The maximum number of tokens to generate. Requests can use up to
# 2048 tokens shared between prompt and completion.
max_tokens=1024,
# Controls diversity via nucleus sampling: 0.5 means half of all
# likelihood-weighted options are considered.
top_p=1,
# A stop sequence is a predefined or user-specified text string that
# signals an AI to stop generating content, ensuring its responses
# remain focused and concise. Examples include punctuation marks and
# markers like "[end]".
stop=None,
# If set, partial message deltas will be sent.
stream=False,
)
#print(chat_completion.choices[0].message.content)
response = chat_completion.choices[0].message.content
lines = response.split('\n')
task = lines[0]
print(f"TASK: {task}")
retval = {}
if task == "Heatmap":
par_list = eval(lines[1])
print(par_list)
column = par_list[0]
if column == 'bouguer_an' or column== 'elevation_':
retval= create_heatmap(gravity_file, column, lat_min, lat_max, long_min, long_max)
elif column=='magnetic_a':
retval= create_heatmap(magnetic_file, column, lat_min, lat_max, long_min, long_max)
else:
retval= create_heatmap(stream_sed_file, column, lat_min, lat_max, long_min, long_max)
elif task== "Contour":
par_list = eval(lines[1])
print(par_list)
column = par_list[0]
method = int(par_list[1])
if column == 'bouguer_an' or column== 'elevation_':
retval= interpolation_contour(gravity_file, column, lat_min, lat_max, long_min, long_max, method)
elif column=='magnetic_a':
retval= interpolation_contour(magnetic_file, column, lat_min, lat_max, long_min, long_max, method)
else:
retval= interpolation_contour(stream_sed_file, column, lat_min, lat_max, long_min, long_max, method)
elif task=="IDWInterpolation":
par_list = eval(lines[1])
print(par_list)
column = par_list[0]
if column == 'bouguer_an' or column== 'elevation_':
retval= interpolation_geojson(gravity_file, column, lat_min, lat_max, long_min, long_max, 1)
elif column=='magnetic_a':
retval= interpolation_geojson(magnetic_file, column, lat_min, lat_max, long_min, long_max, 1)
else:
retval= interpolation_geojson(stream_sed_file, column, lat_min, lat_max, long_min, long_max, 1)
elif task=="SplineInterpolation":
par_list = eval(lines[1])
print(par_list)
column = par_list[0]
if column == 'bouguer_an' or column== 'elevation_':
retval= interpolation_geojson(gravity_file, column, lat_min, lat_max, long_min, long_max, 2)
elif column=='magnetic_a':
retval= interpolation_geojson(magnetic_file, column, lat_min, lat_max, long_min, long_max, 2)
else:
retval= interpolation_geojson(stream_sed_file, column, lat_min, lat_max, long_min, long_max, 2)
elif task=="KrigingInterpolation":
par_list = eval(lines[1])
print(par_list)
column = par_list[0]
if column == 'bouguer_an' or column== 'elevation_':
retval= interpolation_geojson(gravity_file, column, lat_min, lat_max, long_min, long_max, 3)
elif column=='magnetic_a':
retval= interpolation_geojson(magnetic_file, column, lat_min, lat_max, long_min, long_max, 3)
else:
retval= interpolation_geojson(stream_sed_file, column, lat_min, lat_max, long_min, long_max, 3)
elif task=="NNInterpolation":
par_list = eval(lines[1])
print(par_list)
column = par_list[0]
if column == 'bouguer_an' or column== 'elevation_':
retval= interpolation_geojson(gravity_file, column, lat_min, lat_max, long_min, long_max, 4)
elif column=='magnetic_a':
retval= interpolation_geojson(magnetic_file, column, lat_min, lat_max, long_min, long_max, 4)
else:
retval= interpolation_geojson(stream_sed_file, column, lat_min, lat_max, long_min, long_max, 4)
elif task == "Threshold":
par_list = eval(lines[1])
print(par_list)
column = par_list[0]
threshold = float(par_list[1])
retval= plot_high_value_points(stream_sed_file, column, lat_min, lat_max, long_min, long_max, threshold)
elif task == "Exploration":
retval=plot_excavation_sites(exploration_file, lat_min, lat_max, long_min, long_max)
elif task == "Histogram":
par_list = eval(lines[1])
print(par_list)
retval= create_geochem_avg_histogram(stream_sed_file,par_list, lat_min, lat_max, long_min, long_max)
else:
retval = {"message": response, "html": None}
return retval
stream_sed_file = r'ngdr_json/stream_sediments_chem.geojson'
gravity_file = r'ngdr_json/gravity_phy.geojson'
magnetic_file = r'ngdr_json/magnetic_phy.geojson'
exploration_file = r'ngdr_json/exploration_data.geojson'
iface= gr.Interface(fn = Manager_agent,
inputs = ["text","text","text","text","text"],
outputs = "json",
title = "DataExplorer_Agent",
description="Gets Geological textual and visual outputs for a query")
iface.launch(inline=False)
# latmin = 21.0
# latmax = 22.0
# longmin = 78.0
# longmax = 79.0
# mquery = "Give the excavation sites in this reion"
# response = Manager_agent(mquery, latmin, latmax, longmin, longmax)
# if "html" in response:
# with open('heatmap.html', 'w') as f:
# f.write(response["html"])
# print(response["message"])
# else:
# print(response["message"])
|