Niansuh commited on
Commit
2d2d416
1 Parent(s): 167b588

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +249 -0
app.py ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ import math
3
+ import random
4
+ import spaces
5
+ import gradio as gr
6
+ import numpy as np
7
+ import torch
8
+ from PIL import Image
9
+ from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL
10
+ from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
11
+ from huggingface_hub import hf_hub_download
12
+ from huggingface_hub import InferenceClient
13
+
14
+
15
+ help_text = """
16
+ To optimize image results:
17
+ - Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
18
+ - Modify the **Text CFG weight** to influence how closely the edit follows text instructions. Increase it to adhere more to the text, or decrease it for subtler changes.
19
+ - Experiment with different **random seeds** and **CFG values** for varied outcomes.
20
+ - **Rephrase your instructions** for potentially better results.
21
+ - **Increase the number of steps** for enhanced edits.
22
+ """
23
+
24
+ def set_timesteps_patched(self, num_inference_steps: int, device = None):
25
+ self.num_inference_steps = num_inference_steps
26
+
27
+ ramp = np.linspace(0, 1, self.num_inference_steps)
28
+ sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
29
+
30
+ sigmas = (sigmas).to(dtype=torch.float32, device=device)
31
+ self.timesteps = self.precondition_noise(sigmas)
32
+
33
+ self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
34
+ self._step_index = None
35
+ self._begin_index = None
36
+ self.sigmas = self.sigmas.to("cpu")
37
+
38
+ # Image Editor
39
+ edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
40
+ normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
41
+
42
+ EDMEulerScheduler.set_timesteps = set_timesteps_patched
43
+
44
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
45
+
46
+ pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
47
+ edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
48
+ )
49
+ pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
50
+ pipe_edit.to("cuda")
51
+
52
+ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
53
+
54
+ if not torch.cuda.is_available():
55
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
56
+
57
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
58
+
59
+
60
+ # Image Generator
61
+ if torch.cuda.is_available():
62
+ pipe = StableDiffusionXLPipeline.from_pretrained(
63
+ "fluently/Fluently-XL-v4",
64
+ torch_dtype=torch.float16,
65
+ use_safetensors=True,
66
+ )
67
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
68
+ pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
69
+ pipe.set_adapters("dalle")
70
+
71
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
72
+ if randomize_seed:
73
+ seed = random.randint(0, 999999)
74
+ return seed
75
+
76
+ # Generator
77
+ @spaces.GPU(duration=30, queue=False)
78
+ def king(type = "Image Generation",
79
+ input_image = None,
80
+ instruction: str = "Eiffel tower",
81
+ steps: int = 8,
82
+ randomize_seed: bool = False,
83
+ seed: int = 25,
84
+ text_cfg_scale: float = 7.3,
85
+ image_cfg_scale: float = 1.7,
86
+ width: int = 1024,
87
+ height: int = 1024,
88
+ guidance_scale: float = 6.2,
89
+ use_resolution_binning: bool = True,
90
+ progress=gr.Progress(track_tqdm=True),
91
+ ):
92
+ if type=="Image Editing" :
93
+ seed = int(randomize_seed_fn(seed, randomize_seed))
94
+ text_cfg_scale = text_cfg_scale
95
+ image_cfg_scale = image_cfg_scale
96
+ input_image = input_image
97
+
98
+ steps=steps
99
+ generator = torch.manual_seed(seed)
100
+ output_image = pipe_edit(
101
+ instruction, image=input_image,
102
+ guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
103
+ num_inference_steps=steps, generator=generator).images[0]
104
+ return seed, output_image
105
+ else :
106
+ pipe.to(device)
107
+ seed = int(randomize_seed_fn(seed, randomize_seed))
108
+ generator = torch.Generator().manual_seed(seed)
109
+
110
+ options = {
111
+ "prompt":instruction,
112
+ "width":width,
113
+ "height":height,
114
+ "guidance_scale":guidance_scale,
115
+ "num_inference_steps":steps,
116
+ "generator":generator,
117
+ "use_resolution_binning":use_resolution_binning,
118
+ "output_type":"pil",
119
+ }
120
+
121
+ output_image = pipe(**options).images[0]
122
+ return seed, output_image
123
+
124
+ # Prompt classifier
125
+ def response(instruction, input_image=None):
126
+ if input_image is None:
127
+ output="Image Generation"
128
+ yield output
129
+ else:
130
+ client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
131
+
132
+ generate_kwargs = dict(
133
+ max_new_tokens=5,
134
+ )
135
+
136
+ system="[SYSTEM] You will be provided with text, and your task is to classify task is image generation or image editing answer with only task do not say anything else and stop as soon as possible. [TEXT]"
137
+
138
+ formatted_prompt = system + instruction + "[TASK]"
139
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
140
+ output = ""
141
+ for response in stream:
142
+ if not response.token.text == "</s>":
143
+ output += response.token.text
144
+ if "editing" in output:
145
+ output = "Image Editing"
146
+ else:
147
+ output = "Image Generation"
148
+ yield output
149
+ return output
150
+
151
+ css = '''
152
+ .gradio-container{max-width: 600px !important}
153
+ h1{text-align:center}
154
+ footer {
155
+ visibility: hidden
156
+ }
157
+ '''
158
+
159
+ examples=[
160
+ [
161
+ "Image Generation",
162
+ None,
163
+ "A Super Car",
164
+
165
+ ],
166
+ [
167
+ "Image Editing",
168
+ "./supercar.png",
169
+ "make it red",
170
+
171
+ ],
172
+ [
173
+ "Image Editing",
174
+ "./red_car.png",
175
+ "add some snow",
176
+
177
+ ],
178
+ [
179
+ "Image Generation",
180
+ None,
181
+ "Kids going o school, Anime style",
182
+
183
+ ],
184
+ [
185
+ "Image Generation",
186
+ None,
187
+ "Beautiful Eiffel Tower at Night",
188
+
189
+ ],
190
+ ]
191
+
192
+ with gr.Blocks(css=css) as demo:
193
+ gr.Markdown("# Image Generator Pro")
194
+ with gr.Row():
195
+ with gr.Column(scale=4):
196
+ instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
197
+ with gr.Column(scale=1):
198
+ type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True, info="AI will select option based on your query, but if it selects wrong, please choose correct one.")
199
+ with gr.Column(scale=1):
200
+ generate_button = gr.Button("Generate")
201
+
202
+ with gr.Row():
203
+ input_image = gr.Image(label="Image", type="pil", interactive=True)
204
+
205
+ with gr.Row():
206
+ text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
207
+ image_cfg_scale = gr.Number(value=1.7, step=0.1,label="Image CFG", interactive=True)
208
+ steps = gr.Number(value=25, precision=0, label="Steps", interactive=True)
209
+ randomize_seed = gr.Radio(
210
+ ["Fix Seed", "Randomize Seed"],
211
+ value="Randomize Seed",
212
+ type="index",
213
+ show_label=False,
214
+ interactive=True,
215
+ )
216
+ seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
217
+
218
+ gr.Examples(
219
+ examples=examples,
220
+ inputs=[type,input_image, instruction],
221
+ fn=king,
222
+ outputs=[input_image],
223
+ cache_examples=False,
224
+ )
225
+
226
+ gr.Markdown(help_text)
227
+
228
+ instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
229
+
230
+ input_image.upload(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
231
+
232
+ gr.on(triggers=[
233
+ generate_button.click,
234
+ instruction.submit
235
+ ],
236
+ fn=king,
237
+ inputs=[type,
238
+ input_image,
239
+ instruction,
240
+ steps,
241
+ randomize_seed,
242
+ seed,
243
+ text_cfg_scale,
244
+ image_cfg_scale,
245
+ ],
246
+ outputs=[seed, input_image],
247
+ )
248
+
249
+ demo.queue(max_size=99999).launch()