|
import spaces |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
class ModelProcessor: |
|
def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"): |
|
self.device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True |
|
) |
|
self.model.eval() |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
@torch.inference_mode() |
|
def process_data_and_compute_statistics(self, prompt): |
|
tokens = self.tokenizer( |
|
prompt, return_tensors="pt", truncation=True, max_length=512 |
|
).to(self.model.device) |
|
outputs = self.model(tokens["input_ids"]) |
|
logits = outputs.logits |
|
shifted_labels = tokens["input_ids"][..., 1:].contiguous() |
|
shifted_logits = logits[..., :-1, :].contiguous() |
|
shifted_probs = torch.softmax(shifted_logits, dim=-1) |
|
shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1) |
|
entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze() |
|
logits_flat = shifted_logits.view(-1, shifted_logits.size(-1)) |
|
labels_flat = shifted_labels.view(-1) |
|
probabilities_flat = torch.softmax(logits_flat, dim=-1) |
|
true_class_probabilities = probabilities_flat.gather( |
|
1, labels_flat.unsqueeze(1) |
|
).squeeze(1) |
|
nll = -torch.log( |
|
true_class_probabilities.clamp(min=1e-9) |
|
) |
|
ranks = ( |
|
shifted_logits.argsort(dim=-1, descending=True) |
|
== shifted_labels.unsqueeze(-1) |
|
).nonzero()[:, -1] |
|
if entropy.clamp(max=4).median() < 2.0: |
|
return 1 |
|
return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0 |
|
|
|
processor = ModelProcessor() |
|
|
|
@spaces.GPU(duration=180) |
|
def detect(prompt): |
|
prediction = processor.process_data_and_compute_statistics(prompt) |
|
if prediction == 1: |
|
return "<div class='output-text'>The text is likely <b>generated</b> by a language model.</div>" |
|
else: |
|
return "<div class='output-text'>The text is likely <b>not generated</b> by a language model.</div>" |
|
|
|
with gr.Blocks( |
|
css=""" |
|
.gradio-container { |
|
max-width: 800px; |
|
margin: 0 auto; |
|
} |
|
.gr-box { |
|
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); |
|
padding: 20px; |
|
border-radius: 4px; |
|
} |
|
.gr-button { |
|
background-color: #007bff; |
|
color: white; |
|
padding: 10px 20px; |
|
border-radius: 4px; |
|
} |
|
.gr-button:hover { |
|
background-color: #0056b3; |
|
} |
|
.hyperlinks a { |
|
margin-right: 10px; |
|
} |
|
.output-text { |
|
text-align: center; |
|
font-size: 24px; |
|
font-weight: bold; |
|
} |
|
""" |
|
) as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
gr.Markdown("# ENTELL Model Detection - ChatGPTBots.net") |
|
with gr.Column(scale=1): |
|
gr.HTML( |
|
""" |
|
""", |
|
elem_classes="hyperlinks", |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox( |
|
lines=8, |
|
placeholder="Type your prompt here...", |
|
label="Prompt", |
|
) |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
output = gr.HTML() |
|
|
|
submit_btn.click(fn=detect, inputs=promp |