File size: 3,056 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# coding=utf-8
# The MIT License (MIT)

# Copyright (c) Microsoft Corporation

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""Tokenization classes for MiniLM."""

from __future__ import absolute_import, division, print_function, unicode_literals

import collections
import logging
import os
import unicodedata
from io import open

from transformers.tokenization_bert import BertTokenizer, whitespace_tokenize

logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'}

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased-vocab.txt?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    'minilm-l12-h384-uncased': 512,
}


class MinilmTokenizer(BertTokenizer):
    r"""
    Constructs a MinilmTokenizer.
    :class:`~transformers.MinilmTokenizer` is identical to BertTokenizer and runs end-to-end tokenization: punctuation splitting + wordpiece
    Args:
        vocab_file: Path to a one-wordpiece-per-line vocabulary file
        do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False
        do_basic_tokenize: Whether to do basic tokenization before wordpiece.
        max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the
            minimum of this value (if specified) and the underlying BERT model's sequence length.
        never_split: List of tokens which will never be split during tokenization. Only has an effect when
            do_wordpiece_only=False
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES


class WhitespaceTokenizer(object):
    def tokenize(self, text):
        return whitespace_tokenize(text)