Spaces:
Starting
Starting
File size: 11,961 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Evaluate the perplexity of a trained language model.
"""
import logging
import math
import os
import sys
from argparse import Namespace
from typing import Iterable, List, Optional
import torch
import fairseq
from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from fairseq.logging.meters import StopwatchMeter
from fairseq.sequence_scorer import SequenceScorer
from omegaconf import DictConfig
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.eval_lm")
def eval_lm(
models: List[fairseq.models.FairseqModel],
source_dictionary: fairseq.data.Dictionary,
batch_iterator: Iterable,
post_process: Optional[str] = None,
output_word_probs: bool = False,
output_word_stats: bool = False,
target_dictionary: Optional[fairseq.data.Dictionary] = None,
softmax_batch: int = 0,
remove_bos_token: bool = False,
device: Optional[torch.device] = None,
):
"""
Args:
models (List[~fairseq.models.FairseqModel]): list of models to
evaluate. Models are essentially `nn.Module` instances, but
must be compatible with fairseq's `SequenceScorer`.
source_dictionary (~fairseq.data.Dictionary): dictionary for
applying any relevant post processing or outputing word
probs/stats.
batch_iterator (Iterable): yield batches of data
post_process (Optional[str]): post-process text by removing BPE,
letter segmentation, etc. Valid options can be found in
fairseq.data.utils.post_process, although not all options
are implemented here.
output_word_probs (Optional[bool]): output words and their
predicted log probabilities
output_word_stats (Optional[bool]): output word statistics such
as word count and average probability
target_dictionary (Optional[~fairseq.data.Dictionary]): output
dictionary (defaults to *source_dictionary*)
softmax_batch (Optional[bool]): if BxT is more than this, will
batch the softmax over vocab to this amount of tokens, in
order to fit into GPU memory
remove_bos_token (Optional[bool]): if True, confirm that the
first token is the beginning-of-sentence symbol (according
to the relevant dictionary) and remove it from the output
device (Optional[torch.device]): device to use for evaluation
(defaults to device of first model parameter)
"""
if target_dictionary is None:
target_dictionary = source_dictionary
if device is None:
device = next(models[0].parameters()).device
gen_timer = StopwatchMeter()
scorer = SequenceScorer(target_dictionary, softmax_batch)
score_sum = 0.0
count = 0
if post_process is not None:
if post_process in {"subword_nmt", "@@ "}:
bpe_cont = post_process.rstrip()
bpe_toks = {
i
for i in range(len(source_dictionary))
if source_dictionary[i].endswith(bpe_cont)
}
else:
raise NotImplementedError(
"--post-process={post_process} is not implemented"
)
bpe_len = len(bpe_cont)
else:
bpe_toks = None
bpe_len = 0
word_stats = dict()
for sample in batch_iterator:
if "net_input" not in sample:
continue
sample = utils.move_to_cuda(sample, device=device)
gen_timer.start()
hypos = scorer.generate(models, sample)
gen_timer.stop(sample["ntokens"])
for i, hypos_i in enumerate(hypos):
hypo = hypos_i[0]
sample_id = sample["id"][i]
tokens = hypo["tokens"]
tgt_len = tokens.numel()
pos_scores = hypo["positional_scores"].float()
if remove_bos_token:
assert hypo["tokens"][0].item() == target_dictionary.bos()
tokens = tokens[1:]
pos_scores = pos_scores[1:]
skipped_toks = 0
if bpe_toks is not None:
for i in range(tgt_len - 1):
if tokens[i].item() in bpe_toks:
skipped_toks += 1
pos_scores[i + 1] += pos_scores[i]
pos_scores[i] = 0
inf_scores = pos_scores.eq(float("inf")) | pos_scores.eq(float("-inf"))
if inf_scores.any():
logger.info(
"skipping tokens with inf scores:",
target_dictionary.string(tokens[inf_scores.nonzero()]),
)
pos_scores = pos_scores[(~inf_scores).nonzero()]
score_sum += pos_scores.sum().cpu()
count += pos_scores.numel() - skipped_toks
if output_word_probs or output_word_stats:
w = ""
word_prob = []
is_bpe = False
for i in range(len(tokens)):
w_ind = tokens[i].item()
w += source_dictionary[w_ind]
if bpe_toks is not None and w_ind in bpe_toks:
w = w[:-bpe_len]
is_bpe = True
else:
word_prob.append((w, pos_scores[i].item()))
next_prob = None
ind = i + 1
while ind < len(tokens):
if pos_scores[ind].item() != 0:
next_prob = pos_scores[ind]
break
ind += 1
word_stats.setdefault(w, WordStat(w, is_bpe)).add(
pos_scores[i].item(), next_prob
)
is_bpe = False
w = ""
if output_word_probs:
logger.info(
str(int(sample_id))
+ " "
+ (
"\t".join(
"{} [{:2f}]".format(x[0], x[1]) for x in word_prob
)
)
)
avg_nll_loss = (
-score_sum / count / math.log(2) if count > 0 else 0
) # convert to base 2
logger.info(
"Evaluated {:,} tokens in {:.1f}s ({:.2f} tokens/s)".format(
gen_timer.n, gen_timer.sum, 1.0 / gen_timer.avg if gen_timer.avg > 0 else 0
)
)
if output_word_stats:
for ws in sorted(word_stats.values(), key=lambda x: x.count, reverse=True):
logger.info(ws)
return {
"loss": avg_nll_loss,
"perplexity": 2 ** avg_nll_loss,
}
class WordStat(object):
def __init__(self, word, is_bpe):
self.word = word
self.is_bpe = is_bpe
self.log_prob = 0
self.next_word_prob = 0
self.count = 0
self.missing_next_words = 0
def add(self, log_prob, next_word_prob):
"""increments counters for the sum of log probs of current word and next
word (given context ending at current word). Since the next word might be at the end of the example,
or it might be not counted because it is not an ending subword unit,
also keeps track of how many of those we have seen"""
if next_word_prob is not None:
self.next_word_prob += next_word_prob
else:
self.missing_next_words += 1
self.log_prob += log_prob
self.count += 1
def __str__(self):
return "{}\t{}\t{}\t{}\t{}\t{}".format(
self.word,
self.count,
self.log_prob,
self.is_bpe,
self.next_word_prob,
self.count - self.missing_next_words,
)
def main(cfg: DictConfig, **unused_kwargs):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
utils.import_user_module(cfg.common)
logger.info(cfg)
if cfg.eval_lm.context_window > 0:
# reduce tokens per sample by the required context window size
cfg.task.tokens_per_sample -= cfg.eval_lm.context_window
# Initialize the task using the current *cfg*
task = tasks.setup_task(cfg.task)
# Load ensemble
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, model_args, task = checkpoint_utils.load_model_ensemble_and_task(
[cfg.common_eval.path],
arg_overrides=eval(cfg.common_eval.model_overrides),
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
task=task,
)
use_fp16 = cfg.common.fp16
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
if use_cuda:
torch.cuda.set_device(cfg.distributed_training.device_id)
# Optimize ensemble for generation and set the source and dest dicts on the model
# (required by scorer)
for model in models:
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
assert len(models) > 0
logger.info(
"num. model params: {:,}".format(sum(p.numel() for p in models[0].parameters()))
)
# Load dataset splits
task.load_dataset(cfg.dataset.gen_subset)
dataset = task.dataset(cfg.dataset.gen_subset)
logger.info(
"{} {} {:,} examples".format(
cfg.task.data, cfg.dataset.gen_subset, len(dataset)
)
)
itr = task.eval_lm_dataloader(
dataset=dataset,
max_tokens=cfg.dataset.max_tokens or 36000,
batch_size=cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
*[model.max_positions() for model in models]
),
num_shards=max(
cfg.dataset.num_shards,
cfg.distributed_training.distributed_world_size,
),
shard_id=max(
cfg.dataset.shard_id,
cfg.distributed_training.distributed_rank,
),
num_workers=cfg.dataset.num_workers,
data_buffer_size=cfg.dataset.data_buffer_size,
context_window=cfg.eval_lm.context_window,
)
itr = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
)
results = eval_lm(
models=models,
source_dictionary=task.source_dictionary,
batch_iterator=itr,
post_process=cfg.common_eval.post_process,
output_word_probs=cfg.eval_lm.output_word_probs,
output_word_stats=cfg.eval_lm.output_word_stats,
target_dictionary=task.target_dictionary,
softmax_batch=cfg.eval_lm.softmax_batch,
remove_bos_token=getattr(cfg.task, "add_bos_token", False),
)
logger.info(
"Loss (base 2): {:.4f}, Perplexity: {:.2f}".format(
results["loss"], results["perplexity"]
)
)
return results
def cli_main():
parser = options.get_eval_lm_parser()
args = options.parse_args_and_arch(parser)
distributed_utils.call_main(convert_namespace_to_omegaconf(args), main)
if __name__ == "__main__":
cli_main()
|