Tzktz's picture
Upload 7664 files
6fc683c verified
raw
history blame
5.48 kB
# coding=utf-8
# The MIT License (MIT)
# Copyright (c) Microsoft Corporation
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
""" MiniLM model configuration """
from __future__ import absolute_import, division, print_function, unicode_literals
import json
import logging
import sys
from io import open
from transformers.configuration_utils import PretrainedConfig
logger = logging.getLogger(__name__)
MINILM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased-config.json?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
}
class MinilmConfig(PretrainedConfig):
r"""
:class:`~transformers.MinilmConfig` is the configuration class to store the configuration of a
`MinilmModel`.
Arguments:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `MiniLMModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`MiniLMModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
"""
pretrained_config_archive_map = MINILM_PRETRAINED_CONFIG_ARCHIVE_MAP
def __init__(self,
vocab_size=28996,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=6,
initializer_range=0.02,
layer_norm_eps=1e-12,
source_type_id=0,
target_type_id=1,
**kwargs):
super(MinilmConfig, self).__init__(**kwargs)
if isinstance(vocab_size, str) or (sys.version_info[0] == 2
and isinstance(vocab_size, unicode)):
with open(vocab_size, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size, int):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.source_type_id = source_type_id
self.target_type_id = target_type_id
else:
raise ValueError("First argument must be either a vocabulary size (int)"
" or the path to a pretrained model config file (str)")