Spaces:
Sleeping
Sleeping
MODEL: | |
MASK_ON: True | |
META_ARCHITECTURE: "GeneralizedRCNN" | |
PIXEL_MEAN: [123.675, 116.280, 103.530] | |
PIXEL_STD: [58.395, 57.120, 57.375] | |
BACKBONE: | |
NAME: "build_vit_fpn_backbone" | |
VIT: | |
OUT_FEATURES: ["layer3", "layer5", "layer7", "layer11"] | |
DROP_PATH: 0.1 | |
IMG_SIZE: [224,224] | |
POS_TYPE: "abs" | |
FPN: | |
IN_FEATURES: ["layer3", "layer5", "layer7", "layer11"] | |
ANCHOR_GENERATOR: | |
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map | |
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps) | |
RPN: | |
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"] | |
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level | |
PRE_NMS_TOPK_TEST: 1000 # Per FPN level | |
# Detectron1 uses 2000 proposals per-batch, | |
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue) | |
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2. | |
POST_NMS_TOPK_TRAIN: 1000 | |
POST_NMS_TOPK_TEST: 1000 | |
ROI_HEADS: | |
NAME: "StandardROIHeads" | |
IN_FEATURES: ["p2", "p3", "p4", "p5"] | |
NUM_CLASSES: 5 | |
ROI_BOX_HEAD: | |
NAME: "FastRCNNConvFCHead" | |
NUM_FC: 2 | |
POOLER_RESOLUTION: 7 | |
ROI_MASK_HEAD: | |
NAME: "MaskRCNNConvUpsampleHead" | |
NUM_CONV: 4 | |
POOLER_RESOLUTION: 14 | |
DATASETS: | |
TRAIN: ("publaynet_train",) | |
TEST: ("publaynet_val",) | |
SOLVER: | |
LR_SCHEDULER_NAME: "WarmupCosineLR" | |
AMP: | |
ENABLED: True | |
OPTIMIZER: "ADAMW" | |
BACKBONE_MULTIPLIER: 1.0 | |
CLIP_GRADIENTS: | |
ENABLED: True | |
CLIP_TYPE: "full_model" | |
CLIP_VALUE: 1.0 | |
NORM_TYPE: 2.0 | |
WARMUP_FACTOR: 0.01 | |
BASE_LR: 0.0004 | |
WEIGHT_DECAY: 0.05 | |
IMS_PER_BATCH: 32 | |
INPUT: | |
CROP: | |
ENABLED: True | |
TYPE: "absolute_range" | |
SIZE: (384, 600) | |
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800) | |
FORMAT: "RGB" | |
DATALOADER: | |
FILTER_EMPTY_ANNOTATIONS: False | |
VERSION: 2 | |
AUG: | |
DETR: True | |
SEED: 42 |