|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from cgitb import enable |
|
import math |
|
import sys |
|
from typing import Iterable |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import utils |
|
|
|
def train_one_epoch(model: torch.nn.Module, vqkd: torch.nn.Module, |
|
data_loader: Iterable, optimizer: torch.optim.Optimizer, |
|
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, |
|
log_writer=None, lr_scheduler=None, start_steps=None, |
|
lr_schedule_values=None, wd_schedule_values=None, args=None): |
|
model.train() |
|
metric_logger = utils.MetricLogger(delimiter=" ") |
|
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
header = 'Epoch: [{}]'.format(epoch) |
|
print_freq = 10 |
|
|
|
loss_fn = nn.CrossEntropyLoss() |
|
|
|
for step, (batch, extra_info) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): |
|
|
|
it = start_steps + step |
|
if lr_schedule_values is not None or wd_schedule_values is not None: |
|
for i, param_group in enumerate(optimizer.param_groups): |
|
if lr_schedule_values is not None: |
|
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] |
|
if wd_schedule_values is not None and param_group["weight_decay"] > 0: |
|
param_group["weight_decay"] = wd_schedule_values[it] |
|
|
|
samples, images, bool_masked_pos = batch |
|
images = images.to(device, non_blocking=True) |
|
samples = samples.to(device, non_blocking=True) |
|
bool_masked_pos = bool_masked_pos.to(device, non_blocking=True) |
|
|
|
with torch.no_grad(): |
|
with torch.cuda.amp.autocast(): |
|
input_ids = vqkd.get_codebook_indices(images) |
|
bool_masked_pos = bool_masked_pos.flatten(1).to(torch.bool) |
|
labels = input_ids[bool_masked_pos] |
|
|
|
with torch.cuda.amp.autocast(): |
|
outputs = model(samples, bool_masked_pos=bool_masked_pos) |
|
|
|
if isinstance(outputs, list): |
|
loss_1 = loss_fn(input=outputs[0], target=labels) |
|
loss_2 = loss_fn(input=outputs[1], target=labels) |
|
loss = loss_1 + loss_2 |
|
else: |
|
loss = loss_fn(input=outputs, target=labels) |
|
|
|
|
|
loss_value = loss.item() |
|
|
|
if not math.isfinite(loss_value): |
|
print(f"Loss is {loss_value}, stopping training at rank {utils.get_rank()}", force=True) |
|
sys.exit(1) |
|
|
|
optimizer.zero_grad() |
|
|
|
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order |
|
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, |
|
parameters=model.parameters(), create_graph=is_second_order) |
|
loss_scale_value = loss_scaler.state_dict()["scale"] |
|
|
|
torch.cuda.synchronize() |
|
|
|
if isinstance(outputs, list): |
|
mlm_acc_1 = (outputs[0].max(-1)[1] == labels).float().mean().item() |
|
mlm_acc_2 = (outputs[1].max(-1)[1] == labels).float().mean().item() |
|
metric_logger.update(mlm_acc_1=mlm_acc_1) |
|
metric_logger.update(mlm_acc_2=mlm_acc_2) |
|
metric_logger.update(loss_1=loss_1.item()) |
|
metric_logger.update(loss_2=loss_2.item()) |
|
|
|
if log_writer is not None: |
|
log_writer.update(mlm_acc_1=mlm_acc_1, head="loss") |
|
log_writer.update(mlm_acc_2=mlm_acc_2, head="loss") |
|
log_writer.update(loss_1=loss_1.item(), head="loss") |
|
log_writer.update(loss_2=loss_2.item(), head="loss") |
|
else: |
|
mlm_acc = (outputs.max(-1)[1] == labels).float().mean().item() |
|
metric_logger.update(mlm_acc=mlm_acc) |
|
if log_writer is not None: |
|
log_writer.update(mlm_acc=mlm_acc, head="loss") |
|
|
|
metric_logger.update(loss=loss_value) |
|
metric_logger.update(loss_scale=loss_scale_value) |
|
min_lr = 10. |
|
max_lr = 0. |
|
for group in optimizer.param_groups: |
|
min_lr = min(min_lr, group["lr"]) |
|
max_lr = max(max_lr, group["lr"]) |
|
|
|
metric_logger.update(lr=max_lr) |
|
metric_logger.update(min_lr=min_lr) |
|
weight_decay_value = None |
|
for group in optimizer.param_groups: |
|
if group["weight_decay"] > 0: |
|
weight_decay_value = group["weight_decay"] |
|
metric_logger.update(weight_decay=weight_decay_value) |
|
metric_logger.update(grad_norm=grad_norm) |
|
|
|
if log_writer is not None: |
|
log_writer.update(loss=loss_value, head="loss") |
|
log_writer.update(loss_scale=loss_scale_value, head="opt") |
|
log_writer.update(lr=max_lr, head="opt") |
|
log_writer.update(min_lr=min_lr, head="opt") |
|
log_writer.update(weight_decay=weight_decay_value, head="opt") |
|
log_writer.update(grad_norm=grad_norm, head="opt") |
|
|
|
log_writer.set_step() |
|
|
|
if lr_scheduler is not None: |
|
lr_scheduler.step_update(start_steps + step) |
|
|
|
metric_logger.synchronize_between_processes() |
|
print("Averaged stats:", metric_logger) |
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|
|
|