Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beitv2 | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# By Zhiliang Peng | |
# Based on BEiT, timm, DeiT and DINO code bases | |
# https://github.com/microsoft/unilm/tree/master/beit | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# https://github.com/facebookresearch/deit/ | |
# https://github.com/facebookresearch/dino | |
# --------------------------------------------------------' | |
import argparse | |
import datetime | |
from pyexpat import model | |
import numpy as np | |
import time | |
import torch | |
import torch.backends.cudnn as cudnn | |
import json | |
import os | |
from pathlib import Path | |
from collections import OrderedDict | |
from timm.data.mixup import Mixup | |
from timm.models import create_model | |
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy | |
from timm.utils import ModelEma | |
from optim_factory import create_optimizer, get_parameter_groups, LayerDecayValueAssigner | |
from datasets import build_dataset | |
from engine_for_finetuning import train_one_epoch, evaluate | |
from utils import NativeScalerWithGradNormCount as NativeScaler | |
import utils | |
from scipy import interpolate | |
import modeling_finetune | |
import imagenet_a_r_indices | |
def get_args(): | |
parser = argparse.ArgumentParser('BEiT fine-tuning and evaluation script for image classification', add_help=False) | |
parser.add_argument('--batch_size', default=64, type=int) | |
parser.add_argument('--epochs', default=30, type=int) | |
parser.add_argument('--update_freq', default=1, type=int) | |
parser.add_argument('--save_ckpt_freq', default=5, type=int) | |
# robust evaluation | |
parser.add_argument('--robust_test', default=None, type=str, | |
help='robust evaluation dataset') | |
# Model parameters | |
parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL', | |
help='Name of model to train') | |
parser.add_argument('--qkv_bias', action='store_true') | |
parser.add_argument('--disable_qkv_bias', action='store_false', dest='qkv_bias') | |
parser.set_defaults(qkv_bias=True) | |
parser.add_argument('--rel_pos_bias', action='store_true') | |
parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias') | |
parser.set_defaults(rel_pos_bias=True) | |
parser.add_argument('--abs_pos_emb', action='store_true') | |
parser.set_defaults(abs_pos_emb=False) | |
parser.add_argument('--layer_scale_init_value', default=0.1, type=float, | |
help="0.1 for base, 1e-5 for large. set 0 to disable layer scale") | |
parser.add_argument('--input_size', default=224, type=int, | |
help='images input size') | |
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', | |
help='Dropout rate (default: 0.)') | |
parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT', | |
help='Attention dropout rate (default: 0.)') | |
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', | |
help='Drop path rate (default: 0.1)') | |
parser.add_argument('--disable_eval_during_finetuning', action='store_true', default=False) | |
parser.add_argument('--model_ema', action='store_true', default=False) | |
parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='') | |
parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='') | |
# Optimizer parameters | |
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', | |
help='Optimizer (default: "adamw"') | |
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', | |
help='Optimizer Epsilon (default: 1e-8)') | |
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', | |
help='Optimizer Betas (default: None, use opt default)') | |
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', | |
help='Clip gradient norm (default: None, no clipping)') | |
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', | |
help='SGD momentum (default: 0.9)') | |
parser.add_argument('--weight_decay', type=float, default=0.05, | |
help='weight decay (default: 0.05)') | |
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the | |
weight decay. We use a cosine schedule for WD and using a larger decay by | |
the end of training improves performance for ViTs.""") | |
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', | |
help='learning rate (default: 5e-4)') | |
parser.add_argument('--layer_decay', type=float, default=0.9) | |
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', | |
help='warmup learning rate (default: 1e-6)') | |
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', | |
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') | |
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', | |
help='epochs to warmup LR, if scheduler supports') | |
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', | |
help='num of steps to warmup LR, will overload warmup_epochs if set > 0') | |
# Augmentation parameters | |
parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', | |
help='Color jitter factor (default: 0.4)') | |
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', | |
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), | |
parser.add_argument('--smoothing', type=float, default=0.1, | |
help='Label smoothing (default: 0.1)') | |
parser.add_argument('--train_interpolation', type=str, default='bicubic', | |
help='Training interpolation (random, bilinear, bicubic default: "bicubic")') | |
# Evaluation parameters | |
parser.add_argument('--crop_pct', type=float, default=None) | |
# * Random Erase params | |
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', | |
help='Random erase prob (default: 0.25)') | |
parser.add_argument('--remode', type=str, default='pixel', | |
help='Random erase mode (default: "pixel")') | |
parser.add_argument('--recount', type=int, default=1, | |
help='Random erase count (default: 1)') | |
parser.add_argument('--resplit', action='store_true', default=False, | |
help='Do not random erase first (clean) augmentation split') | |
# * Mixup params | |
parser.add_argument('--mixup', type=float, default=0, | |
help='mixup alpha, mixup enabled if > 0.') | |
parser.add_argument('--cutmix', type=float, default=0, | |
help='cutmix alpha, cutmix enabled if > 0.') | |
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, | |
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') | |
parser.add_argument('--mixup_prob', type=float, default=1.0, | |
help='Probability of performing mixup or cutmix when either/both is enabled') | |
parser.add_argument('--mixup_switch_prob', type=float, default=0.5, | |
help='Probability of switching to cutmix when both mixup and cutmix enabled') | |
parser.add_argument('--mixup_mode', type=str, default='batch', | |
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') | |
# * Finetuning params | |
parser.add_argument('--finetune', default='', | |
help='finetune from checkpoint') | |
parser.add_argument('--model_key', default='model|module', type=str) | |
parser.add_argument('--model_prefix', default='', type=str) | |
parser.add_argument('--model_filter_name', default='', type=str) | |
parser.add_argument('--init_scale', default=0.001, type=float) | |
parser.add_argument('--use_mean_pooling', action='store_true') | |
parser.set_defaults(use_mean_pooling=True) | |
parser.add_argument('--use_cls', action='store_false', dest='use_mean_pooling') | |
parser.add_argument('--disable_weight_decay_on_rel_pos_bias', action='store_true', default=False) | |
# Dataset parameters | |
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, | |
help='dataset path') | |
parser.add_argument('--image_folder_class_index_file', default=None, type=str, | |
help='in22k data path, used with turing in22k label data') | |
parser.add_argument('--eval_data_path', default=None, type=str, help='dataset path for evaluation') | |
parser.add_argument('--nb_classes', default=0, type=int, | |
help='number of the classification types') | |
parser.add_argument('--load-tar', action='store_true', help='Loading *.tar files for dataset') | |
parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true') | |
parser.add_argument('--data_set', default='IMNET', choices=['CIFAR', 'IMNET', 'image_folder'], | |
type=str, help='ImageNet dataset path') | |
parser.add_argument('--output_dir', default='', | |
help='path where to save, empty for no saving') | |
parser.add_argument('--log_dir', default=None, | |
help='path where to tensorboard log') | |
parser.add_argument('--device', default='cuda', | |
help='device to use for training / testing') | |
parser.add_argument('--seed', default=0, type=int) | |
parser.add_argument('--resume', default='', | |
help='resume from checkpoint') | |
parser.add_argument('--auto_resume', action='store_true') | |
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') | |
parser.set_defaults(auto_resume=True) | |
parser.add_argument('--save_ckpt', action='store_true') | |
parser.add_argument('--no_save_ckpt', action='store_false', dest='save_ckpt') | |
parser.set_defaults(save_ckpt=True) | |
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', | |
help='start epoch') | |
parser.add_argument('--eval', action='store_true', | |
help='Perform evaluation only') | |
parser.add_argument('--dist_eval', action='store_true', default=False, | |
help='Enabling distributed evaluation') | |
parser.add_argument('--num_workers', default=10, type=int) | |
parser.add_argument('--pin_mem', action='store_true', | |
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') | |
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') | |
parser.set_defaults(pin_mem=True) | |
# distributed training parameters | |
parser.add_argument('--world_size', default=1, type=int, | |
help='number of distributed processes') | |
parser.add_argument('--local_rank', default=-1, type=int) | |
parser.add_argument('--dist_on_itp', action='store_true') | |
parser.add_argument('--dist_url', default='env://', | |
help='url used to set up distributed training') | |
parser.add_argument('--enable_deepspeed', action='store_true', default=False) | |
known_args, _ = parser.parse_known_args() | |
if known_args.enable_deepspeed: | |
try: | |
import deepspeed | |
from deepspeed import DeepSpeedConfig | |
parser = deepspeed.add_config_arguments(parser) | |
ds_init = deepspeed.initialize | |
except: | |
print("Please 'pip install deepspeed==0.4.0'") | |
exit(0) | |
else: | |
ds_init = None | |
return parser.parse_args(), ds_init | |
def get_models(args): | |
model = create_model( | |
args.model, | |
pretrained=False, | |
num_classes=args.nb_classes, | |
drop_rate=args.drop, | |
drop_path_rate=args.drop_path, | |
attn_drop_rate=args.attn_drop_rate, | |
drop_block_rate=None, | |
use_mean_pooling=args.use_mean_pooling, | |
init_scale=args.init_scale, | |
use_rel_pos_bias=args.rel_pos_bias, | |
use_abs_pos_emb=args.abs_pos_emb, | |
init_values=args.layer_scale_init_value, | |
qkv_bias=args.qkv_bias, | |
) | |
return model | |
def main(args, ds_init): | |
utils.init_distributed_mode(args) | |
if ds_init is not None: | |
utils.create_ds_config(args) | |
print(args) | |
device = torch.device(args.device) | |
# fix the seed for reproducibility | |
seed = args.seed + utils.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
# random.seed(seed) | |
cudnn.benchmark = True | |
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args) | |
if args.disable_eval_during_finetuning: | |
dataset_val = None | |
else: | |
dataset_val, _ = build_dataset(is_train=False, args=args) | |
if True: # args.distributed: | |
num_tasks = utils.get_world_size() | |
global_rank = utils.get_rank() | |
sampler_train = torch.utils.data.DistributedSampler( | |
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True | |
) | |
print("Sampler_train = %s" % str(sampler_train)) | |
if args.dist_eval: | |
if len(dataset_val) % num_tasks != 0: | |
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' | |
'This will slightly alter validation results as extra duplicate entries are added to achieve ' | |
'equal num of samples per-process.') | |
sampler_val = torch.utils.data.DistributedSampler( | |
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) | |
else: | |
sampler_val = torch.utils.data.SequentialSampler(dataset_val) | |
else: | |
sampler_train = torch.utils.data.RandomSampler(dataset_train) | |
sampler_val = torch.utils.data.SequentialSampler(dataset_val) | |
if global_rank == 0 and args.log_dir is not None: | |
os.makedirs(args.log_dir, exist_ok=True) | |
log_writer = utils.TensorboardLogger(log_dir=args.log_dir) | |
else: | |
log_writer = None | |
data_loader_train = torch.utils.data.DataLoader( | |
dataset_train, sampler=sampler_train, | |
batch_size=args.batch_size, | |
num_workers=args.num_workers, | |
pin_memory=args.pin_mem, | |
drop_last=True, | |
) | |
if dataset_val is not None: | |
data_loader_val = torch.utils.data.DataLoader( | |
dataset_val, sampler=sampler_val, | |
batch_size=int(1.5 * args.batch_size), | |
num_workers=args.num_workers, | |
pin_memory=args.pin_mem, | |
drop_last=False | |
) | |
else: | |
data_loader_val = None | |
mixup_fn = None | |
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None | |
if mixup_active: | |
print("Mixup is activated!") | |
mixup_fn = Mixup( | |
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, | |
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, | |
label_smoothing=args.smoothing, num_classes=args.nb_classes) | |
model = get_models(args) | |
patch_size = model.patch_embed.patch_size | |
print("Patch size = %s" % str(patch_size)) | |
args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) | |
args.patch_size = patch_size | |
if args.finetune: | |
if args.finetune.startswith('https'): | |
checkpoint = torch.hub.load_state_dict_from_url( | |
args.finetune, map_location='cpu', check_hash=True) | |
else: | |
checkpoint = torch.load(args.finetune, map_location='cpu') | |
print("Load ckpt from %s" % args.finetune) | |
checkpoint_model = None | |
for model_key in args.model_key.split('|'): | |
if model_key in checkpoint: | |
checkpoint_model = checkpoint[model_key] | |
print("Load state_dict by model_key = %s" % model_key) | |
break | |
if checkpoint_model is None: | |
checkpoint_model = checkpoint | |
if (checkpoint_model is not None) and (args.model_filter_name != ''): | |
all_keys = list(checkpoint_model.keys()) | |
new_dict = OrderedDict() | |
for key in all_keys: | |
if key.startswith('encoder.'): | |
new_dict[key[8:]] = checkpoint_model[key] | |
else: | |
pass | |
checkpoint_model = new_dict | |
state_dict = model.state_dict() | |
for k in ['head.weight', 'head.bias']: | |
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: | |
if args.robust_test == 'imagenet_r': | |
mask = torch.tensor(imagenet_a_r_indices.imagenet_r_mask) | |
checkpoint_model[k] = checkpoint_model[k][mask] | |
elif args.robust_test == 'imagenet_a': | |
mask = torch.tensor(imagenet_a_r_indices.imagenet_a_mask) | |
checkpoint_model[k] = checkpoint_model[k][mask] | |
else: | |
print(f"Removing key {k} from pretrained checkpoint") | |
del checkpoint_model[k] | |
if getattr(model, 'use_rel_pos_bias', False) and "rel_pos_bias.relative_position_bias_table" in checkpoint_model: | |
print("Expand the shared relative position embedding to each transformer block. ") | |
num_layers = model.get_num_layers() | |
rel_pos_bias = checkpoint_model["rel_pos_bias.relative_position_bias_table"] | |
for i in range(num_layers): | |
checkpoint_model["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone() | |
checkpoint_model.pop("rel_pos_bias.relative_position_bias_table") | |
all_keys = list(checkpoint_model.keys()) | |
for key in all_keys: | |
if "relative_position_index" in key: | |
checkpoint_model.pop(key) | |
if "relative_position_bias_table" in key: | |
rel_pos_bias = checkpoint_model[key] | |
src_num_pos, num_attn_heads = rel_pos_bias.size() | |
dst_num_pos, _ = model.state_dict()[key].size() | |
dst_patch_shape = model.patch_embed.patch_shape | |
if dst_patch_shape[0] != dst_patch_shape[1]: | |
raise NotImplementedError() | |
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) | |
src_size = int((src_num_pos - num_extra_tokens) ** 0.5) | |
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) | |
if src_size != dst_size: | |
print("Position interpolate for %s from %dx%d to %dx%d" % ( | |
key, src_size, src_size, dst_size, dst_size)) | |
extra_tokens = rel_pos_bias[-num_extra_tokens:, :] | |
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] | |
def geometric_progression(a, r, n): | |
return a * (1.0 - r ** n) / (1.0 - r) | |
left, right = 1.01, 1.5 | |
while right - left > 1e-6: | |
q = (left + right) / 2.0 | |
gp = geometric_progression(1, q, src_size // 2) | |
if gp > dst_size // 2: | |
right = q | |
else: | |
left = q | |
# if q > 1.090307: | |
# q = 1.090307 | |
dis = [] | |
cur = 1 | |
for i in range(src_size // 2): | |
dis.append(cur) | |
cur += q ** (i + 1) | |
r_ids = [-_ for _ in reversed(dis)] | |
x = r_ids + [0] + dis | |
y = r_ids + [0] + dis | |
t = dst_size // 2.0 | |
dx = np.arange(-t, t + 0.1, 1.0) | |
dy = np.arange(-t, t + 0.1, 1.0) | |
print("Original positions = %s" % str(x)) | |
print("Target positions = %s" % str(dx)) | |
all_rel_pos_bias = [] | |
for i in range(num_attn_heads): | |
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() | |
f = interpolate.interp2d(x, y, z, kind='cubic') | |
all_rel_pos_bias.append( | |
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) | |
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) | |
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) | |
checkpoint_model[key] = new_rel_pos_bias | |
# interpolate position embedding | |
if ('pos_embed' in checkpoint_model) and (model.pos_embed is not None): | |
pos_embed_checkpoint = checkpoint_model['pos_embed'] | |
embedding_size = pos_embed_checkpoint.shape[-1] | |
num_patches = model.patch_embed.num_patches | |
num_extra_tokens = model.pos_embed.shape[-2] - num_patches | |
# height (== width) for the checkpoint position embedding | |
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) | |
# height (== width) for the new position embedding | |
new_size = int(num_patches ** 0.5) | |
# class_token and dist_token are kept unchanged | |
if orig_size != new_size: | |
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) | |
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | |
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
checkpoint_model['pos_embed'] = new_pos_embed | |
utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) | |
# model.load_state_dict(checkpoint_model, strict=False) | |
model.to(device) | |
model_ema = None | |
if args.model_ema: | |
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper | |
model_ema = ModelEma( | |
model, | |
decay=args.model_ema_decay, | |
device='cpu' if args.model_ema_force_cpu else '', | |
resume='') | |
print("Using EMA with decay = %.8f" % args.model_ema_decay) | |
model_without_ddp = model | |
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
print("Model = %s" % str(model_without_ddp)) | |
print('number of params:', n_parameters) | |
total_batch_size = args.batch_size * args.update_freq * utils.get_world_size() | |
num_training_steps_per_epoch = len(dataset_train) // total_batch_size | |
print("LR = %.8f" % args.lr) | |
print("Batch size = %d" % total_batch_size) | |
print("Update frequent = %d" % args.update_freq) | |
print("Number of training examples = %d" % len(dataset_train)) | |
print("Number of training training per epoch = %d" % num_training_steps_per_epoch) | |
num_layers = model_without_ddp.get_num_layers() | |
if args.layer_decay < 1.0: | |
assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2))) | |
else: | |
assigner = None | |
if assigner is not None: | |
print("Assigned values = %s" % str(assigner.values)) | |
skip_weight_decay_list = model.no_weight_decay() | |
if args.disable_weight_decay_on_rel_pos_bias: | |
for i in range(num_layers): | |
skip_weight_decay_list.add("blocks.%d.attn.relative_position_bias_table" % i) | |
if args.enable_deepspeed: | |
loss_scaler = None | |
optimizer_params = get_parameter_groups( | |
model, args.weight_decay, skip_weight_decay_list, | |
assigner.get_layer_id if assigner is not None else None, | |
assigner.get_scale if assigner is not None else None) | |
model, optimizer, _, _ = ds_init( | |
args=args, model=model, model_parameters=optimizer_params, dist_init_required=not args.distributed, | |
) | |
print("model.gradient_accumulation_steps() = %d" % model.gradient_accumulation_steps()) | |
assert model.gradient_accumulation_steps() == args.update_freq | |
else: | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) | |
model_without_ddp = model.module | |
optimizer = create_optimizer( | |
args, model_without_ddp, skip_list=skip_weight_decay_list, | |
get_num_layer=assigner.get_layer_id if assigner is not None else None, | |
get_layer_scale=assigner.get_scale if assigner is not None else None) | |
loss_scaler = NativeScaler() | |
print("Use step level LR scheduler!") | |
lr_schedule_values = utils.cosine_scheduler( | |
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, | |
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, | |
) | |
if args.weight_decay_end is None: | |
args.weight_decay_end = args.weight_decay | |
wd_schedule_values = utils.cosine_scheduler( | |
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) | |
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) | |
if mixup_fn is not None: | |
# smoothing is handled with mixup label transform | |
criterion = SoftTargetCrossEntropy() | |
elif args.smoothing > 0.: | |
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) | |
else: | |
criterion = torch.nn.CrossEntropyLoss() | |
print("criterion = %s" % str(criterion)) | |
utils.auto_load_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, | |
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema) | |
if args.eval: | |
test_stats = evaluate(data_loader_val, model, device) | |
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") | |
exit(0) | |
print(f"Start training for {args.epochs} epochs") | |
start_time = time.time() | |
max_accuracy = 0.0 | |
for epoch in range(args.start_epoch, args.epochs): | |
if args.distributed: | |
data_loader_train.sampler.set_epoch(epoch) | |
if log_writer is not None: | |
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq) | |
train_stats = train_one_epoch( | |
model, criterion, data_loader_train, optimizer, | |
device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn, | |
log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, | |
lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, | |
num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq | |
) | |
if args.output_dir and args.save_ckpt: | |
utils.save_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, | |
loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema, save_ckpt_freq=args.save_ckpt_freq) | |
if data_loader_val is not None: | |
test_stats = evaluate(data_loader_val, model, device) | |
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") | |
if max_accuracy < test_stats["acc1"]: | |
max_accuracy = test_stats["acc1"] | |
if args.output_dir and args.save_ckpt: | |
utils.save_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, | |
loss_scaler=loss_scaler, epoch="best", model_ema=model_ema) | |
print(f'Max accuracy: {max_accuracy:.2f}%') | |
if log_writer is not None: | |
log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch) | |
log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch) | |
log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch) | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
**{f'test_{k}': v for k, v in test_stats.items()}, | |
'epoch': epoch, | |
'n_parameters': n_parameters} | |
else: | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
# **{f'test_{k}': v for k, v in test_stats.items()}, | |
'epoch': epoch, | |
'n_parameters': n_parameters} | |
if args.output_dir and utils.is_main_process(): | |
if log_writer is not None: | |
log_writer.flush() | |
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('Training time {}'.format(total_time_str)) | |
if __name__ == '__main__': | |
opts, ds_init = get_args() | |
if opts.output_dir: | |
Path(opts.output_dir).mkdir(parents=True, exist_ok=True) | |
main(opts, ds_init) | |